

View

Online


Export
Citation

CrossMark

RESEARCH ARTICLE |  NOVEMBER 17 2022

Quasi-diabatic propagation scheme for simulating polariton
chemistry 
Deping Hu   ; Arkajit Mandal  ; Braden M. Weight  ; Pengfei Huo  

J. Chem. Phys. 157, 194109 (2022)
https://doi.org/10.1063/5.0127118

 30 July 2023 19:04:53

https://pubs.aip.org/aip/jcp/article/157/19/194109/2842056/Quasi-diabatic-propagation-scheme-for-simulating
https://pubs.aip.org/aip/jcp/article/157/19/194109/2842056/Quasi-diabatic-propagation-scheme-for-simulating?pdfCoverIconEvent=cite
https://pubs.aip.org/aip/jcp/article/157/19/194109/2842056/Quasi-diabatic-propagation-scheme-for-simulating?pdfCoverIconEvent=crossmark
javascript:;
https://orcid.org/0000-0001-7161-1253
javascript:;
https://orcid.org/0000-0001-9088-2980
javascript:;
https://orcid.org/0000-0002-2441-3569
javascript:;
https://orcid.org/0000-0002-8639-9299
javascript:;
https://doi.org/10.1063/5.0127118
https://servedbyadbutler.com/redirect.spark?MID=176720&plid=2067147&setID=592934&channelID=0&CID=756251&banID=521002076&PID=0&textadID=0&tc=1&adSize=1640x440&data_keys=%7B%22%22%3A%22%22%7D&matches=%5B%22inurl%3A%5C%2Fjcp%22%5D&mt=1690743893326516&spr=1&referrer=http%3A%2F%2Fpubs.aip.org%2Faip%2Fjcp%2Farticle-pdf%2Fdoi%2F10.1063%2F5.0127118%2F16553471%2F194109_1_online.pdf&hc=d36480a93a17f4a61dc889db41f1ac1738bbf65e&location=


The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

Quasi-diabatic propagation scheme
for simulating polariton chemistry

Cite as: J. Chem. Phys. 157, 194109 (2022); doi: 10.1063/5.0127118
Submitted: 19 September 2022 • Accepted: 3 November 2022 •
Published Online: 17 November 2022

Deping Hu,1,a) Arkajit Mandal,1 ,2 Braden M. Weight,3 and Pengfei Huo1 ,4,b)

AFFILIATIONS
1 Department of Chemistry, University of Rochester, 120 Trustee Road, Rochester, New York 14627, USA
2Department of Chemistry, Columbia University, New York, New York 10027, USA
3Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627, USA
4The Institute of Optics, Hajim School of Engineering, University of Rochester, Rochester, New York 14627, USA

a)Electronic mail: deping.hu@rochester.edu
b)Author to whom correspondence should be addressed: pengfei.huo@rochester.edu

ABSTRACT
We generalize the quasi-diabatic (QD) propagation scheme to simulate the non-adiabatic polariton dynamics in molecule–cavity hybrid
systems. The adiabatic-Fock states, which are the tensor product states of the adiabatic electronic states of the molecule and photon Fock
states, are used as the locally well-defined diabatic states for the dynamics propagation. These locally well-defined diabatic states allow using
any diabatic quantum dynamics methods for dynamics propagation, and the definition of these states will be updated at every nuclear time
step. We use several recently developed non-adiabatic mapping approaches as the diabatic dynamics methods to simulate polariton quantum
dynamics in a Shin–Metiu model coupled to an optical cavity. The results obtained from the mapping approaches provide very accurate
population dynamics compared to the numerically exact method and outperform the widely used mixed quantum-classical approaches, such
as the Ehrenfest dynamics and the fewest switches surface hopping approach. We envision that the generalized QD scheme developed in
this work will provide a powerful tool to perform the non-adiabatic polariton simulations by allowing a direct interface between the diabatic
dynamics methods and ab initio polariton information.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0127118

I. INTRODUCTION

Coupling molecules to the quantized radiation field inside an
optical cavity creates a set of new photon-matter hybrid states, which
are commonly referred to as polaritons,1–6 which have been shown
to facilitate new chemical reactivities.1,6–9 Theoretical investigations
play a crucial role in understanding the fundamental limit and basic
principles in this emerging field,5,6,10–13 as these polariton chemi-
cal reactions often involve a rich dynamical interplay among the
electronic, nuclear, and photonic degrees of freedom (DOFs). Accu-
rately simulating polaritonic quantum dynamics remains a challeng-
ing task and is beyond the scope of photochemistry or quantum
optics.2

The trajectory-based non-adiabatic dynamics approaches14–16

play an important role in simulating the non-adiabatic dynamics of
the coupled electronic–nuclear DOFs. Two of the most commonly
used mixed quantum-classical (MQC) methods are the Ehrenfest

and fewest switches surface hopping (FSSH) approaches.17,18 Both
approaches describe the electronic subsystem quantum mechan-
ically and treat the nuclear DOFs classically. It is thus a natu-
ral idea for the theoretical chemistry community to extend these
two approaches to investigate polariton chemistry by treating the
electronic–photonic DOFs (or so-called polariton subsystem) quan-
tum mechanically and the nuclear DOFs classically. Incorporating
the description of the photon field into the MQC methods has
become a basic strategy to simulate polariton chemistry.10–13,19–22

The key ingredient in the MQC simulations of polariton dynam-
ics is the expression of the nuclear gradient. Recently, we derived
a rigorous expression of the nuclear gradient using the quan-
tum electrodynamics (QED) Hamiltonian without making the
usual approximations,23 such as the rotating wave approximation.
These gradient expressions, together with the corresponding MQC
approaches (Ehrenfest and FSSH approaches), are valid for any
number of electronic states or Fock states at any light–matter
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coupling strength. However, the inherent semi-classical approxima-
tion in these approaches can lead to the break-down of detailed
balance24 (incorrect long time population) in Ehrenfest dynamics
and the creation of artificial electronic coherence25 or incorrect
chemical kinetics25 for the FSSH dynamics without invoking ad hoc
decoherence corrections.

In response to these theoretical challenges, a wide range of non-
adiabatic dynamics approaches have been developed in the diabatic
representation. Many of them belong to the family of non-adiabatic
mapping dynamics that are based on the Meyer–Miller–Stock–
Thoss (MMST) mapping formalism.26–28 These methods include
partial linearized density matrix29,30 (PLDM), symmetrical quasi-
classical31,32 (SQC), and the quantum-classical Liouville equation
(QCLE) dynamics.33,34 In particular, the recently developed γ-SQC
has been shown35 to provide impressively accurate non-adiabatic
photo-dissociation quantum dynamics with coupled Morse poten-
tials through the adjusted zero-point energy (ZPE) parameter of
the mapping variables, thus appearing to be a promising method
to simulate on-the-fly quantum dynamics of complex molecular
systems. In addition, the spin-mapping Linearized Semi-Classical
(spin-LSC) approach,36–38 which uses generalized spin mapping rep-
resentation37 for the electronic DOF as well as the linearization
approximation39,40 for the nuclear DOF, has also shown a signifi-
cant improvement of the population dynamics in the system–bath
model problems (such as in spin–boson systems36 and many-state
exciton Hamiltonians of light-harvesting complexes37). The γ-SQC
approach has already demonstrated41 its ability to outperform MQC
approaches (Ehrenfest and FSSH) in describing the electronic non-
adiabatic dynamics for ab initio on-the-fly simulations. These new
mapping approaches should, in principle, also outperform the MQC
methods in simulating the polaritonic non-adiabatic dynamics that
happens in the electron–photon subspace coupling to the motion
of the nuclei. Unfortunately, to the best of our knowledge, there
are only limited studies of using mapping dynamics to investi-
gate polariton chemistry for model systems with strict diabatic
states.6,9,42

Recently, we have developed the quasi-diabatic (QD) propaga-
tion scheme41,43–47 as a general framework to seamlessly combine a
diabatic quantum dynamics approach, such as the mapping based
methods,35,37 with the adiabatic outputs of an electronic structure
method. The QD propagation scheme uses the adiabatic states at a
reference nuclear geometry (the so-called “crude adiabatic” states) as
the locally well-defined diabatic states during a short-time propaga-
tion and then dynamically updates the QD basis at each consecutive
nuclear propagation step. In this propagation scheme, one does
not construct a global diabatic representation but, instead, uses a
sequence of locally diabatic representations (one for each short-time
segment) to propagate the dynamics. We have both analytically43

and numerically45,46 demonstrated that the QD scheme provides
exactly the same results compared to the direct diabatic quantum
dynamics at the single trajectory level.

In this work, we generalize the QD propagation scheme to
simulate polariton non-adiabatic dynamics in a molecule–cavity
hybrid system. In particular, we use the adiabatic-Fock state at a ref-
erence nuclear geometry as the locally well-defined diabatic basis
to propagate the polariton dynamics and dynamically update the
definition of these local diabatic states between two consecutive
propagation steps. These adiabatic-Fock states are tensor products

of the electronic adiabatic states for the molecular system and the
Fock states of the photon field inside an optical cavity. We use the
Shin–Metiu (SM) model48,49 as the “ab initio” model molecular sys-
tem to investigate strong and ultra-strong light–matter interactions
between a molecule and an optical cavity. Through numerical sim-
ulations, we demonstrate the accuracy of using both γ-SQC35 and
spin-LSC36,37 to obtain non-adiabatic polariton dynamics, which
outperforms widely used MQC approaches.

II. THEORY AND METHODS
A. The Pauli–Fierz QED Hamiltonian

The Pauli–Fierz (PF) QED Hamiltonian for one molecule
coupled to quantized radiation field inside an optical cavity can be
written as

Ĥ = T̂n + Ĥen + Ĥp + Ĥenp + Ĥd, (1)

where T̂n represents the nuclear kinetic energy operator, and
Ĥen is the electronic Hamiltonian that describes electron–nucleus
interactions. Furthermore, Ĥ p, Ĥ enp, and Ĥ d represent the pho-
tonic Hamiltonian, electronic–nuclear–photonic interactions, and
the dipole self-energy (DSE) term, respectively. A full derivation of
this Hamiltonian, as well as its connection with the various atomic
cavity QED models, can be found in the appendix of Ref. 42.

The electronic–nuclear potential Ĥ en, which describes the
common molecular Hamiltonian excluding the nuclear kinetic
energy, is described as follows:

Ĥen = T̂e + V̂ee + V̂en + V̂nn. (2)

The above expression includes electronic kinetic energy, electron–
electron interaction, electron–nucleus interaction, and nucleus–
nucleus interaction. The expressions of these four terms can be
found in previous work.50–52 Modern electronic structure theory
have been developed around solving the eigenvalue problem of
Ĥ en, providing the following electronically adiabatic energy and its
corresponding state:

Ĥen∣ϕα(R)⟩ = Eα(R)∣ϕα(R)⟩. (3)

Here, ∣ϕα(R)⟩ represents the αth many-electron adiabatic state for a
given molecular system, with the adiabatic energy Eα(R).

For clarity, we restrict our discussions to the cavity with only
one photonic mode, and all the formulas presented here can be easily
generalized into a more realistic, many-mode cavity. The photonic
Hamiltonian is written as

Ĥp =
1
2
(p̂2

c + ω
2
cq̂2

c) = h̵ω c(â †â +
1
2
), (4)

where q̂ c =
√

h̵/2ω c(â †
+ â) and p̂ c = i

√
h̵ω c/2(â †

− â) are photon
field operators, â † and â are the photonic creation and annihilation
operators, respectively, and ωc is the photon frequency.

The light–matter coupling term (electronic–nuclear–photonic
interactions) under the dipole gauge is expressed as

Ĥenp = ω cq̂ c(λ ⋅ μ̂) = g cϵ ⋅ μ̂(â †
+ â), (5)
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where λ = λ ⋅ ϵ characterizes the cavity photon field strength, and
ϵ is the direction of the field polarization. The photon field strength
is determined by the volume of the cavity as λ =

√
1/ϵ0V0, where

ϵ0 is the permittivity inside the cavity and V0 is the effective quan-
tization volume inside the cavity. Another way to characterize the
light–matter coupling strength is using g c =

√
h̵ω c/2λ. Note that

the common notation used in the literature,6,53 the definition of
gc also includes λ ⋅ μ̂. Furthermore, the total dipole operator of both
electrons and nuclei is defined as

μ̂ = −∑
i

er̂i +∑
j

ZjeR̂j, (6)

where −e is the charge of the electron and Zje is the charge of the
jth nucleus.

Finally, the DSE term is expressed as

Ĥd =
1
2
(λ ⋅ μ̂)2

=
g2

c

h̵ω c
(ϵ ⋅ μ̂)2. (7)

This is a necessary term in the PF Hamiltonian and ensures both
gauge invariance of the Hamiltonian9,54 and a bounded ground
state.9,55,56 In this work, we do not consider the cavity loss. The cav-
ity loss can be effectively incorporated by using Lindblad dynamics
approaches with the MQC simulations.57

For the molecule–cavity hybrid system, a convenient basis
for quantum dynamics simulations could be the photon-dressed
electronic adiabatic states

∣ψi(R)⟩ = ∣ϕα(R)⟩⊗ ∣n⟩ ≡ ∣ϕα(R), n⟩, (8)

where quantum number i ≡ {α, n} indicates both the adiabatic elec-
tronic state of the molecule and the Fock state. Note that we have
introduced a shorthand notation in Eq. (8), which will be used
throughout the rest of this paper. This is one of the most straight-
forward choices of basis for the hybrid system because of the readily
available adiabatic electronic information (e.g., wavefunctions, ener-
gies, and the dipole matrix) from electronic structure calculations
that we need to construct the elements of the Hamiltonian.

In the MQC simulation, such as the Ehrenfest or FSSH
approach, or the recently developed mapping non-adiabatic
approaches, the total molecular Hamiltonian is expressed as

Ĥ = T̂n + V̂ , (9)

where T̂n represents the nuclear kinetic energy operator, and V̂ rep-
resents the rest of the Hamiltonian. For a bare molecular system,
V̂ = Ĥen expressed in Eq. (2). For a molecule–cavity hybrid system,

V̂ = Ĥen + Ĥp + Ĥenp + Ĥd ≡ Ĥpl, (10)

which is commonly referred to as the polariton Hamiltonian,3,58 also
denoted as Ĥ pl. In a similar way that electronic adiabatic states are
defined in Eq. (3), one can further define the polaritonic state3,58 as
the eigenstate of V̂ = Ĥ pl [see definition in Eq. (10)] through the
following eigenequation:

Ĥ pl∣EJ(R)⟩ = EJ(R)∣EJ(R)⟩, (11)

where ∣EJ(R)⟩ is the polariton state with polariton energy EJ(R). The
polariton eigenstate can be expressed as

∣EJ(R)⟩ =∑
α,n

c J
α,n(R)∣ϕα(R), n⟩, (12)

where c J
α,n(R) = ⟨ϕα(R), n∣EJ(R)⟩ and EJ(R) can be obtained by

diagonalizing the matrix of V̂ = Ĥ pl [constructed from the adia-
batic-Fock state basis in Eq. (8)] as

U†
[V(R)]U = [E(R)], (13)

where

[V(R)]ij = ⟨ψi(R)∣V̂ ∣ψj(R)⟩. (14)

Note that the R-dependence of ∣EJ(R)⟩ is entirely coming from the
R-dependence of the adiabatic states ∣ϕα(R)⟩, and the Fock state ∣n⟩
is completely R-independent. Meanwhile, the ∣EJ(R)⟩ is the eigen-
state of V̂ , whereas the adiabatic state ∣ϕα(R)⟩ is only the eigenstate
of Ĥ en, and not for V̂ .

B. Quasi-diabatic propagation scheme
for molecular cavity QED

The QD propagation scheme explicitly addresses the discrep-
ancy between accurate quantum dynamics methods in the diabatic
representation and the electronic structure methods in the adiabatic
representation. The essential idea of the QD scheme is to use the
electronic adiabatic states associated with a reference geometry as
the local diabatic states during a short-time quantum propagation
and dynamically updates the definition of the QD states along the
time-dependent nuclear trajectory.41,43–47

In this work, we apply the QD propagation scheme to the case
of molecular cavity QED. This requires the use of a convenient basis
with a reference nuclear geometry as the locally well-defined diabatic
basis, in the sense that its character is fixed (which is automatically
guaranteed because of the fixed reference geometry by construction)
as well as it is a complete basis (which is only true when the geom-
etry is close to this reference geometry). The potential candidate for
this basis is the adiabatic-Fock state ∣ψi(R)⟩ = ∣ϕα(R), n⟩ [Eq. (8)],
which is not the same as the polariton states ∣EJ(R)⟩ [Eq. (12)]
except for the zero-coupling limit. In this work, we use the adiabatic-
Fock state as the convenient choice due to its simplicity in terms
of the polariton coupling and nuclear gradient expressions in the
QD propagation framework.

Consider a short-time propagation of the nuclear DOFs during
t ∈ [t0, t1], where the nuclear positions evolve from R(t0) to R(t1),
and the corresponding adiabatic-Fock basis [defined in Eq. (8)]
are {∣ψi(R(t0))⟩} and {∣ψj R(t1))⟩}. We uses the basis {∣ψi(R0)⟩

≡ ∣ϕα(R0), n⟩} at the reference nuclear geometry R(t0) as the
diabatic basis during this short-time propagation such that

∣ψi(R0)⟩ ≡ ∣ψi(R(t0))⟩, for t ∈ [t0, t1]. (15)

With the above QD basis defined independently of R(t) within
each propagation segment, the electronic derivative couplings van-
ish while V̂(R(t)) in the QD basis becomes off-diagonal. With
this local diabatic basis, all of the necessary diabatic quantities
can be evaluated and used to propagate quantum dynamics during
t ∈ [t0, t1].
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During this propagation step, the matrix element of V̂ in the
QD basis is evaluated as

Vαβ,mn(R(t)) = ⟨ϕα(R0), m∣V̂(R(t))∣ϕβ(R0), n⟩. (16)

For on-the-fly simulations, this quantity is obtained from a linear
interpolation59 between Vαβ,mn(R0) and Vαβ,mn(R(t1)) as follows:

Vαβ,mn(R(t)) = Vαβ,mn(R0)+
(t − t0)

(t1 − t0)
[Vαβ,mn(R(t1))−Vαβ,mn(R0)].

(17)
The above linear interpolation scheme can be further improved
in future work and one potential choice is the recently developed
norm-preserving interpolation scheme.60,61

It is straightforward to evaluate Vαβ,mn(R0) and Vαβ,mn(R(t1))

separately for the molecule–cavity hybrid system, as discussed
below. Using electronic ab initio calculation, as well as the properties
of â † and â for the photonic DOF, we can explicitly evaluate each
term of Vαβ,mn(R0) [see Eq. (10)] as follows:

H en
αβ,mn(R0) = ⟨ϕα(R0), m∣Ĥ en(R0)∣ϕβ(R0), n⟩

= Eα(R0)δα,βδm,n, (18a)

H p
αβ,mn(R0) = ⟨ϕα(R0), m∣Ĥ p∣ϕβ(R0), n⟩

= h̵ω c(n +
1
2
)δα,βδm,n, (18b)

H enp
αβ,mn(R0) = ⟨ϕα(R0), m∣Ĥ enp(R0)∣ϕβ(R0), n⟩

= g cϵ ⋅ μαβ(R0)(
√

nδm,n−1 +
√

n + 1δm,n+1), (18c)

H d
αβ,mn(R0) = ⟨ϕα(R0), m∣Ĥ d(R0)∣ϕβ(R0), n⟩

=
g2

c

h̵ω c
∑
γ
(ϵ ⋅ μαγ(R0))(ϵ ⋅ μγβ(R0))δm,n

≡ D2
αβ(R0)δm,n, (18d)

where Ĥ p [see its definition in Eq. (4)] is an R-independent operator,
the sum∑γ in the matrix element of Ĥ d runs over the diabatic states,
and D2

αβ denotes the elements of DSE. Furthermore, the matrix ele-
ment of the dipole operator under the diabatic representation is
expressed as

μαβ(R0) ≡ ⟨ϕα(R0)∣μ̂(R0)∣ϕβ(R0)⟩. (19)

Similarly, at time t1, the matrix element Vαβ,mn(R(t1)) = ⟨ϕα(R0),
m∣V̂(R(t1))∣ϕβ(R0), n⟩ can also be written explicitly, with each term
expressed as follows:

H en
αβ,mn(R(t1)) = ⟨ϕα(R0), m∣Ĥ en(R(t1))∣ϕβ(R0), n⟩

= H en
αβ (R(t1))δm,n, (20a)

H p
αβ,mn(R(t1)) = ⟨ϕα(R0), m∣Ĥ p∣ϕβ(R0), n⟩

= h̵ω c(n +
1
2
)δα,βδm,n, (20b)

H enp
αβ,mn(R(t1)) = ⟨ϕα(R0), m∣Ĥ enp(R(t1))∣ϕβ(R0), n⟩

= g cϵ ⋅ μαβ(R(t1))(
√

nδm,n−1 +
√

n + 1δm,n+1),
(20c)

H d
αβ,mn(R(t1)) = ⟨ϕα(R0), m∣Ĥ d(R(t1))∣ϕβ(R0), n⟩

=
g2

c

h̵ω∑γ
(ϵ ⋅ μαγ(R(t1)))(ϵ ⋅ μγβ(R(t1)))δm,n

≡ D2
αβ(R(t1))δm,n, (20d)

where H en
αβ (R(t1)) ≡ ⟨ϕα(R0)∣Ĥ en(R(t1))∣ϕβ(R0)⟩, and μαβ(R(t1))

≡ ⟨ϕα(R0)∣μ̂(R(t1))∣ϕβ(R0)⟩.
To conveniently calculate H en

αβ (R(t1)) and μαβ(R(t1)), we use
the following relations:

H en
αβ (R(t1)) =∑

λν
SαλH̃ en

λν (R(t1))S†
βν, (21a)

μαβ(R(t1)) =∑
λν

Sαλμ̃λν(R(t1))S†
βν, (21b)

where the matrix elements at R(t1) are expressed as

H̃ en
λν (R(t1)) = ⟨ϕλ(R(t1))∣Ĥ en(R(t1))∣ϕν(R(t1))⟩

= Eλ(R(t1))δλν, (22a)

μ̃λν(R(t1)) = ⟨ϕλ(R(t1))∣μ̂(R(t1))∣ϕν(R(t1))⟩, (22b)

and the overlap matrix between two electronic adiabatic states (with
two different nuclear geometries) are

Sαλ = ⟨ϕα(R0)∣ϕλ(R(t1))⟩, (23a)

S†
βν = ⟨ϕν(R(t1))∣ϕβ(R0)⟩. (23b)

Using the above information, as well as Eq. (17), we can obtain
each term of Vαβ,mn(R(t)) for propagating the dynamics of the
quantum subsystem that contains both electronic and photonic
DOFs.

Next, we need to evaluate the nuclear gradients to propagate
the dynamics of the classical subsystem, which contains the nuclear
DOFs. In particular, we need to evaluate the nuclear gradients on
each term of∇Vαβ,mn(R(t1)). First, let us focus on the gradient term
from the electron–nuclear coupling term47 as follows:

∇H en
αβ,mn(R(t1)) = ∇⟨ϕα(R(t0)), m∣Ĥ en(R(t1))∣ϕβ(R(t0)), n⟩

= ⟨ϕα(R(t0))∣∇Ĥ en(R(t1))∣ϕβ(R(t0))⟩ ⋅ ⟨m∣n⟩

=∑
λν

Sαλ⟨ϕλ(R(t1))∣∇Ĥ en(R(t1))∣ϕν(R(t1))⟩S†
βν

× δmn. (24)
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Here, from the first to the second line, we have used the fact that
neither ⟨ϕα(R0)∣ nor ⟨m∣ are R-dependent, which allows∇ to bypass
both and directly act on V̂(R(t1)). We have also used the fact
that Ĥ en does not contain any photonic operators. The gradient
term ⟨ϕλ(R(t1))∣∇Ĥ en(R(t1))∣ϕν(R(t1))⟩ can be evaluated using
the following well-known equality:18

⟨ϕλ(R)∣∇Ĥ en(R)∣ϕν(R)⟩ =
⎧⎪⎪
⎨
⎪⎪⎩

∇Eλ (λ = ν)
dλν(Eν − Eλ) (λ ≠ ν),

(25)

where the non-adiabatic coupling (NAC) vector (or so-called
derivative coupling) is

dλν = ⟨ϕλ(R)∣∇∣ϕν(R)⟩. (26)

For the gradient on the matrix H p
αβ,mn, because there is no

nuclear DOF in Ĥ p, thus

∇H p
αβ,mn(R(t1)) = ∇[h̵ω c(n +

1
2
)δα,βδm,n] = 0. (27)

For the gradient on the light–matter interaction term H enp
αβ,mn,

we have

∇H enp
αβ,mn(R(t1)) = ∇⟨ϕα(R(t0)), m∣Ĥ enp(R(t1))∣ϕβ(R(t0)), n⟩

= ⟨ϕα(R(t0))∣∇μ̂(R(t1))∣ϕβ(R(t0))

× ϵ ⋅ g c(
√

nδm,n−1 +
√

n + 1δm,n+1)

=∑
λν

Sαλ⟨ϕλ(R(t1))∣∇μ̂(R(t1))∣ϕν(R(t1))⟩S†
βν

× ϵ ⋅ g c(
√

nδm,n−1 +
√

n + 1δm,n+1), (28)

where Sαλ and S†
βν are defined in Eqs. (23a) and (23b), respectively.

To evaluate the term ⟨ϕλ(R)∣∇μ̂(R)∣ϕν(R)⟩ that appears in Eq. (28),
we use a simple relation based on the chain rule as follows:

⟨ϕλ(R)∣∇μ̂(R)∣ϕν(R)⟩ = ∇⟨ϕλ(R)∣μ̂(R)∣ϕν(R)⟩ − ⟨∇ϕλ(R)∣μ̂(R)∣ϕν(R)⟩ − ⟨ϕλ(R)∣μ̂(R)∣∇ϕν(R)⟩

= ∇μλν(R) −∑
γ
⟨∇ϕλ(R)∣ϕγ(R)⟩μγν(R) −∑

γ
μλγ(R)⟨ϕγ(R)∣∇ϕν(R)⟩

= ∇μλν(R) +∑
γ
[dλγ(R)μγν(R) − μλγ(R)dγν(R)], (29)

where dλγ(R) = ⟨ϕλ(R)∣∇ϕγ(R)⟩ = −⟨∇ϕλ(R)∣ϕγ(R)⟩ and dγν(R)
= ⟨ϕγ(R)∣∇ϕν(R)⟩ = −⟨∇ϕγ(R)∣ϕν(R)⟩ are the electronic deriva-
tive couplings [defined in Eq. (26)]. Note that from the first line
to the second line, we have inserted P̂ = ∑γ∣ϕγ(R)⟩⟨ϕγ(R)∣, which
is the resolution of identity in the electronic subspace. As one can
clearly see, this term requires the evaluation of derivative coupling

dλγ(R) and dγν(R), and the derivative on dipole matrix element
∇μλν(R). For most of the electronic structure methods, the deriva-
tives on dipole matrix elements∇μλν(R) are not implemented. Nev-
ertheless, recent theoretical development has made these quantities
available.22

Finally, the gradient from the DSE term is expressed as follows:

∇H d
αβ,mn(R(t1)) = ∇⟨ϕα(R0), m∣Ĥ d(R(t1))∣ϕβ(R0), n⟩ = ∇

⎡
⎢
⎢
⎢
⎢
⎣

∑
γ
(ϵ ⋅ ⟨ϕα(R0)∣μ̂(R(t1))∣ϕγ(R0)⟩)(ϵ ⋅ ⟨ϕγ(R0)∣μ̂(R(t1))∣ϕβ(R0)⟩)

⎤
⎥
⎥
⎥
⎥
⎦

g2
c

h̵ω
δm,n

=

⎡
⎢
⎢
⎢
⎢
⎣

∑
γ
(ϵ ⋅ ⟨ϕα(R0)∣∇μ̂(R(t1))∣ϕγ(R0)⟩)(ϵ ⋅ ⟨ϕγ(R0)∣μ̂(R(t1))∣ϕβ(R0)⟩)

+ (ϵ ⋅ ⟨ϕα(R0)∣μ̂(R(t1))∣ϕγ(R0)⟩)(ϵ ⋅ ⟨ϕγ(R0)∣∇μ̂(R(t1))∣ϕβ(R0)⟩)

⎤
⎥
⎥
⎥
⎥
⎦

g2
c

h̵ω
δm,n, (30)

where the term ⟨ϕα(R(t0))∣μ̂(R(t1))∣ϕγ(R(t0))⟩ can be evaluated
using Eq. (21b), and the ⟨ϕα(R0)∣∇μ̂(R(t1))∣ϕβ(R0)⟩ type of
derivative can be computed in the same fashion as elaborated in
Eq. (28).

Using the matrix elements Vαβ,mn(R(t)) [Eq. (17)] and the
nuclear gradient ∇Vαβ,mn(R) [as outlined in Eqs. (24)–(30)], one

can, in principle, use any trajectory-based approaches or wavepacket
approaches with guiding trajectories62–64 to propagate the quan-
tum dynamics in the time step dt = t1 − t0 for t ∈ [t0, t1]. Dur-
ing the next short-time propagation segment t ∈ [t1, t2], the QD
scheme adopts a new reference geometry R′0 ≡ R(t1) and new
diabatic basis ∣ψj(R′0)⟩ ≡ ∣ψj(R(t1))⟩ = ∣ϕβ(R(t1)), m⟩. Between the
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t ∈ [t0, t1] propagation and the t ∈ [t1, t2] propagation segments, all
of the necessary quantities will be transformed from {∣ψi(R0)⟩} to
the {∣ψj(R′0)⟩} basis using the relation

∣ψj(R(t1))⟩ =∑
i
⟨ψi(R(t0))∣ψj(R(t1))⟩∣ψi(R(t0))⟩. (31)

For the model calculations in this work, these overlap integrals
are evaluated as

⟨ψi(R(t0))∣ψj(R(t1))⟩ = ⟨ϕα(R(t0))∣ϕβ(R(t1))⟩ ⋅ ⟨n∣m⟩, (32)

where the electronic adiabatic state overlaps ⟨ϕα(R(t0))∣ϕβ(R(t1))⟩

are directly calculated using the discrete variable representation
(DVR) basis, and the Fock states are orthonormal to each other
⟨n∣m⟩ = δn,m. For ab initio on-the-fly simulations, these overlap
matrices can be computed based on the approach outlined in Ref. 65,
which we have extensively used in our previous work on QD based
on-the-fly simulation with the CASSCF method.41,47

When performing the transformation in Eq. (31) [as well as
in Eq. (43) for the non-adiabatic mapping methods], the eigenvec-
tors maintain their mutual orthogonality subject to a very small
error when they are expressed in terms of the previous basis due to
the incompleteness of the basis.66,67 Nevertheless, the orthogonality
remains to be well satisfied among {∣ψi(R(t0))⟩} or {∣ψj(R(t1))⟩}.
This small numerical error generated from each step can, however,
accumulate over many steps and cause a significant error at longer
times, leading to non-unitary dynamics.66,67 This potential issue can
be easily resolved by using orthonormalization procedure among the
vectors of the overlap matrix composed by ⟨ψi(R(t0))∣ψj(R(t1))⟩,
as been done in our previous work44 for simulating photo-induced
charge transfer dynamics. Here, we perform the Löwdin orthogo-
nalization procedure68 as commonly used in the local diabatization
approach66 to ensure unitary propagation.

Furthermore, the QD scheme ensures a stable propagation of
the quantum dynamics compared to directly solving it in the adi-
abatic representation. This is due to the fact that directly solving
electronic dynamics in the adiabatic state requires the non-adiabatic
coupling ⟨ϕβ(R(t))∣ ∂∂tϕα(R(t))⟩ = dβα(R) ⋅ Ṙ, which might exhibit
highly peaked values and cause large numerical errors. The
QD scheme explicitly alleviates this difficulty by using the well
behaved transformation matrix elements ⟨ϕβ(R(t1))∣ϕα(R(t2))⟩

instead of ⟨ϕβ(R(t))∣ ∂∂tϕα(R(t))⟩. A detailed numerical example
can be found in Fig. 4 of Ref. 46. In this work, the time step
dt is a fixed constant. We have carefully checked the conver-
gence of the dynamics at the single trajectory level with dt. As
explained in our previous work,46 the QD propagation scheme
makes the dynamics less sensitive due to the well defined quantities
⟨ϕβ(R(t1))∣ϕα(R(t2))⟩.

As the nuclear geometry closely follows the reference geometry
throughout the propagation, the QD basis forms a convenient and
compact basis. Note that, in principle, one needs an infinite set of
crude adiabatic states {∣ψi(R0)⟩} to represent the time-dependent
electronic wavefunction because the electronic wavefunction could
change rapidly with the motion of the nuclei, and the crude adiabatic
basis is only convenient when the reference geometry R0 is close to
the nuclear geometry R. By dynamically updating the basis in the
QD scheme, the time-dependent electronic wavefunction is

expanded with the “moving crude adiabatic basis”62 that explores
the most relevant and important parts of the Hilbert space, thus
requiring only a few states for quantum dynamics propagation.

C. Non-adiabatic mapping dynamics methods
The Meyer–Miller–Stock–Thoss (MMST) formalism26–28 maps

the discrete electronic DOFs onto continuous phase space variables.
In the strict diabatic basis {∣a⟩} (in the sense that ⟨a∣∇∣b⟩ = 0 for all
∣a⟩ and ∣b⟩), the total Hamiltonian in Eq. (9) is expressed as

Ĥ =
P2

2M
+∑

a
Vaa(R̂)∣a⟩⟨a∣ +∑

a≠b
Vab(R̂)∣a⟩⟨b∣, (33)

where Vab(R̂) = ⟨a∣V̂(r̂, R̂)∣b⟩ are the matrix elements of the elec-
tronic Hamiltonian. Note that here ∣a⟩ is used to represent the strict
diabatic basis, and not to be confused with the adiabatic-Fock state
∣ψi(R)⟩ = ∣ϕα(R), n⟩ introduced in Eq. (8). Nevertheless, based on
the QD scheme, these adiabatic-Fock states with a reference geom-
etry R0 will be used as the diabatic state in the neighborhood of the
reference geometries, as indicated in Eq. (15).

In the non-adiabatic mapping approach, the Hamiltonian
operator in Eq. (33) is transformed into the following MMST
Hamiltonian:

Hm =
P2

2M
+

1
2∑ab

Vab(R)(papb + qaqb − 2γbδab), (34)

where 2γb is viewed as a parameter69 that specifies the ZPE of the
mapping oscillators.36,37,69,70 In principle, 2γb is state-specific and
trajectory-specific.35 The MMST mapping Hamiltonian has been
historically justified by Stock and Thoss using harmonic oscillator’s
raising and lowering operators as the mapping operator.27,28

Recently, it has been derived using the SU(N) Lie group theory or
so-called generalized spin mapping approach.37

Classical trajectories are generated based on Hamilton’s equa-
tions of motion (EOM)

q̇b = ∂Hm/∂pb; ṗa = −∂Hm/∂qa, (35a)

Ṙ = ∂Hm/∂P; Ṗ = −∂Hm/∂R = F, (35b)

with the nuclear force expressed as

F = −
1
2∑ab
∇Vab(R)(papb + qaqb − 2γbδab). (36)

Overall, the MMST mapping provides a consistent classical footing
for both electronic and nuclear DOFs, and the non-adiabatic
transitions between electronic states are captured through the
classical motion of the fictitious harmonic oscillators. The non-
adiabatic dynamics obtained from this formalism have shown good
performance in the ab initio on-the-fly dynamics.41,47,71

To sample the initial electronic condition and estimate the
population, it is also convenient to use the action-angle variables,
{εb, θb}, which are related to the canonical mapping variables
{pb, qb} through

εb =
1
2
(p2

b + q2
b); θb = −tan−1

(
pb

qb
), (37)
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and the inverse relations

qb =
√

2εb cos(θb); pb = −
√

2εb sin(θb), (38)

where εb is a positive-definite action variable that is directly
proportional to the mapping variables’ radius in action-space.35

The SQC approach calculates the population of electronic state
∣b⟩, which is to be evaluated as69

ρbb(t) = TrR[ρ̂(0)eiĤ t/h̵
∣b⟩⟨b∣e−iĤ t/h̵

]

≈ ∫ dτρW(P, R)Wa(ε(0))Wb(ε(t)), (39)

where ρ̂(0) = ρ̂R ⊗ ∣a⟩⟨a∣ is the initial density operator, ρW(P, R)
is the Wigner transform of ρ̂R operator for the nuclear DOFs,
ε = {ε1, ε2, . . . , εN} is the positive-definite action variable vector for
N electronic states,35 Wa(ε) = δ(εa − (1 + γa))∏a≠b δ(εb − γb) is
the Wigner transformed action variables,72 and dτ ≡ dP ⋅ dR ⋅ dε ⋅
dθ. For practical reasons, the above delta functions in Wa(ε) are
broadened using a distribution function (so-called window func-
tion) that can be used to bin the resulting electronic action variables
in action-space.69 Furthermore, we use the γ-SQC approach,35 which
uses a state-specific and trajectory-specific γb parameter in Eq. (34)
to correct the initial force according to the initially populated state.
This method has been proven to provide very accurate non-adiabatic
dynamics in model photo-dissociation problems (coupled Morse
potential), as well as outperform FSSH (with decoherence correc-
tion) in ab initio on-the-fly simulations.41,71 The details of γ-SQC
are provided in Appendix A.

For the spin-LSC approach,36,37 one chooses a universal ZPE
parameter 2γb = Γ for all states and trajectories. The spin-LSC
population dynamics is calculated as

ρbb(t) = TrR[ρ̂R ⊗ ∣a⟩⟨a∣eiĤ t/h̵
∣b⟩⟨b∣e−iĤ t/h̵

]

≈ ∫ dτρW(P, R)[∣a⟩⟨a∣] s(0) ⋅ [∣b⟩⟨b∣]s̄(t), (40)

where the population estimators are obtained from the Stratono-
vich–Weyl transformed electronic projection operators, with the
expressions as follows:37

[∣a⟩⟨a∣] s =
1
2
(q2

a + p2
a − Γ), (41a)

[∣b⟩⟨b∣]s̄ =
N + 1

2(1 + N Γ
2 )

2 ⋅ (q
2
b + p2

b) −
1 − Γ

2
1 + NΓ

2
. (41b)

The parameter Γ is related to the radius of the generalized Bloch
sphere rs through Γ = 2

N (r s − 1), where s and s̄ are complemen-
tary indices in the Stratonovich–Weyl transform. Among the vast
parameter space, one of the best performing choices36,37 is when
r s = rs̄ =

√
N + 1, which is referred to as s =W, leading to a ZPE

parameter

Γ =
2
N
(
√
N + 1 − 1), (42)

as well as the identical expression of [∣a⟩⟨a∣]s and [∣b⟩⟨b∣]s̄ in
Eq. (41). We further use the focused initial condition36,37 that

replaces the sampling of the mapping variables in the dτ integral
of Eq. (40) with specific values of the mapping variables, such that
1
2(q

2
a + p2

a − Γ) = 1 for initially occupied state ∣a⟩ and 1
2(q

2
b + p2

b − Γ)
= 0 for the initially unoccupied states ∣b⟩. The angle variables {θb}

[Eq. (37)] are randomly sampled37 in the range of [0, 2π).
Using the QD propagation scheme, one can directly per-

form non-adiabatic using both γ-SQC and spin-LSC in their orig-
inal diabatic formalism, with the information from the “ab ini-
tio” polaritonic calculations of the molecule–cavity hybrid system.
Using the schemes outlined in Sec. II B, one can obtain the
polariton coupling ⟨ψi(R0)∣V̂(R)∣ψj(R0)⟩ [see Eqs. (16) and (17)]
and nuclear gradient ∇⟨ψi(R0)∣V̂(R)∣ψj(R0)⟩ [see Eqs. (24)–(30)],
which are the necessary ingredients to solve the MMST mapping
EOMs in Eqs. (35) and (36). Between two propagation steps, the
QD basis is transformed from {∣ψi(R(t0))⟩ ≡ ∣ϕα(R(t0)), n⟩} to
{∣ψj(R(t1))⟩ ≡ ∣ϕβ(R(t1)), m⟩}. This leads to the corresponding
transform of mapping variables between the two consecutive QD
bases as follows:43,47

∑
i

qi⟨ψi(R(t0))∣ψj(R(t1))⟩→ qj, (43a)

∑
i

pi⟨ψi(R(t0))∣ψj(R(t1))⟩→ pj, (43b)

where the overlaps between the two steps are evaluated using
Eq. (32) (see discussion under that equation). More computational
details for the γ-SQC and spin-LSC are provided in Sec. III B.

III. COMPUTATIONAL DETAILS
A. The model system

In this work, we use the asymmetrical Shin–Metiu model48,49

as the “ab initio” model molecular system to investigate strong
light–matter interactions between a molecule and an optical cavity.
The model contains a transferring proton (nucleus) and an elec-
tron, as well as two fixed ions labeled as donor (D) and acceptor
(A), as shown in Fig. 1(a). This model is usually used to describe
the proton-coupled electron transfer (PCET) reaction and has been
studied recently using the exact factorization approach to inves-
tigate how cavity can influence chemical reactivities.49,73,74 The
electron–nuclear interaction potential operator Ĥ en [cf. Eq. (2)] is
expressed as

Ĥ en = ∑
σ=±1

1
∣R + σL

2 ∣
− ∑
σ=±1

erf( ∣r+
σL
2 ∣

aσ
)

∣r + σL
2 ∣

−
erf( ∣R−r∣

af
)

∣R − r∣

≡ V̂ p(R) + V̂ e(r) + V̂ ep(r, R), (44)

where V̂ p(R) represents the potential of the transferring proton,
V̂ e(r) represents the potential of the transferring electron, and
V̂ ep(r, R) represents the electron–proton coupling. We choose the
same parameters used in Ref. 49, which is L = 19 a.u., a+ = 3.1 a.u.,
a− = 4.0 a.u., a f = 5.0 a.u., and the proton mass is M = 1836 a.u. To
calculate the electronic properties of the SM model, we use the Sinc
discrete variable representation (DVR) basis75 to represent the elec-
tronic adiabatic states. These adiabatic states ∣ϕα(R)⟩ are computed
on-the-fly for a given nuclear configuration R by solving Eq. (3). The
details are provided in Appendix B.
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FIG. 1. (a) The schematic illustration of the asymmetrical SM model, where one
proton and one electron can transfer between two fixed ions (donor and accep-
tor). The distance between the donor and acceptor is 19 a.u. Here, Vp and
Ve [see Eq. (44)] are the potential of the transferring proton and electron, respec-
tively. (b) The first two adiabatic electronic states, (c) NAC between these two
electronic states, and (d) their permanent and transition dipole moments of the
SM model. The PESs of the polaritonic states inside the cavity are obtained with
the light–matter coupling strength (e) gc = 0.001 and (f) gc = 0.005. The color
used in (e) and (f) is coded according to ⟨â †â⟩, as shown in the upper position of
panel (e).

Figure 1(a) also depicts the model potential in Eq. (44), with the
black curve depicting the proton potential [the first term in Eq. (44)]
and the green curve depicting the electron potential [the second term
in Eq. (44)]. Figure 1(b) presents the two lowest adiabatic electronic
states of the SM model (red and blue curves). There is an avoided
crossing between the ground and the first excited state potential
energy surfaces (PESs) near R = 2.0 a.u. Figure 1(c) presents the
NAC between them (the green curve), which shows a strong cou-
pling near the avoided crossing region. The matrix elements of the
dipole operator under the adiabatic representation [Eq. (19)] of the
SM model are presented in Fig. 1(d).

When coupling the SM molecular model with the cavity, the
photon frequency of the cavity mode is chosen as hωc = 2.721 eV
(≈ 0.1 a.u). Furthermore, we assume that the cavity field polariza-
tion direction ϵ is always aligned with the direction of the dipole
operator μ̂ such that ϵ ⋅ μγν = μγν (for {ν, γ} = {e, g}) where μγν is
the magnitude of μ̂. Explicitly considering the angle between ϵ and
μ̂ will generate a polariton induced conical intersection (even for a
diatomic molecule), which will induce geometric phase effects.76 We
consider two different light–matter coupling strengths gc = 0.001
a.u. and gc = 0.005 a.u. in this work. The normalized coupling
strength is often defined as77 η ≡ gc ∣ϵμeg ∣/ωc, where ∣ϵ ⋅ μeg ∣ is the
typical magnitude of the transition dipole projected along the field

polarization direction. For the coupling strength considered above
(and taking hωc ≈ 2.721 eV for the model calculation), the normal-
ized coupling strength is η = 0.06 (for gc = 0.001 a.u.) and η = 0.3
(for gc = 0.005 a.u). When 0.1 < η < 1, the light and matter interac-
tion achieves the ultra-strong coupling regime,77,78 which is difficult
to achieve but still within the reach of the current experimental
setup.79,80 Thus, besides the pure theoretical value to derive the
exact nuclear gradient expression, our computational results are also
within the reach of the near future experimental setup.

The polaritonic PESs EJ(R) associated with polariton states
∣EJ(R)⟩ [see their definition in Eq. (11)] are presented in Fig. 1(e)
with the light–matter coupling strength gc = 0.001 a.u. and in
Fig. 1(f) with the light–matter coupling strength gc = 0.005. These
polariton potentials are color coded [as shown in the inset of
panel (e)] based on the expectation value of ⟨â †â⟩ indicated on
top of this panel. Note that this should not be viewed as a
“photon number” operator under the dipole gauge used in the
PF Hamiltonian56,81 because the rigorous photon number oper-
ator should be obtained by applying the Power–Zienau–Woolley
(PZW) gauge transformation54,82,83 on the photon number opera-
tor â †â. Nevertheless, it can be viewed as an approximate estimation
of the photon number when the light–matter couplings are not in
the ultra-strong coupling regime.84 Here, we use it to characterize
the photonic character for a given polariton state.

The initial state (for t = 0) of the molecule–cavity hybrid
system is

∣Φ(t = 0)⟩ = ∣e, 0⟩⊗ ∣χ⟩, (45)

which corresponds to a Franck–Condon excitation of the hybrid
system to the ∣e, 0⟩ state, with ∣χ⟩ as the initial nuclear wave-
function. For the SM model in this work, we use χ(R) = ⟨R∣χ⟩
∼ exp[−Mω0(R − R0)

2
/2h̵], where M is the mass of the proton

(nucleus in the SM model), and R0 is the position with a mini-
mum potential energy of the ground electronic state. Here, χ(R) is
the vibrational ground state wavefunction on the ground electronic
states, centered at R0 under the harmonic approximation, with the
harmonic oscillation frequency being ω0. We use the parameters
in the original Ref. 49 for R0 = −4 and ω0 = 0.000 382 a.u. To solve
the exact quantum dynamics, we use the DVR basis for the nuclear
DOF and the adiabatic-Fock state for the electronic–photonic sub-
system. The details of the exact quantum dynamics are provided in
Appendix B.

B. Details of γ-SQC and spin-LSC dynamics
To perform the γ-SQC dynamics, we need to sample the

initial condition for the quantum subsystem. In this work, we first
sample the action-angle variables {εb, θb} then transform them to
the mapping variables {pb, qb} using Eq. (38). Among them, the
action variables {εb} are sampled according to the window func-
tion in Eq. (A1), and the angle variables {θb} are randomly sampled
from [0, 2π). The triangle window is used in this work, although the
square window generates similar results.

For the spin-LSC dynamics, we use the focused initial con-
ditions37 as described in Sec. II C, where the action variable εa is
set to be 1 + Γ/2 for the initially occupied state and Γ/2 for the
initially unoccupied state, with Γ expressed in Eq. (42). The angle
variables {θb} are randomly generated between [0, 2π) as in the
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γ-SQC method. The canonical mapping variables are obtained from
Eq. (38).

The initial nuclear distribution of all trajectory-based simu-
lations (Ehrenfest, FSSH, γ-SQC, and spin-LSC) are generated by
sampling the Wigner density

[⟨R∣χ⟩]w =
1

h̵π
e−M(P2+ω2

0(R−R0)2)/ω0 h̵, (46)

which is the Wigner transformation of the nuclear wavefunction
χ(R) = ⟨R∣χ⟩ in the initial state [see Eq. (45)]. Here, R and P are the
nuclear coordinate and momentum, respectively. The initial state for
the electronic–photonic subsystem is set to ∣e0⟩. The nuclear time
step used in the QD-γ-SQC and QD-spin-LSC is dt = 0.1 a.u., with
100 equally spaced electronic time steps for the mapping variables’
integration during each nuclear time step. The equation of motion
in Eqs. (35) and (36) are integrated using a second-order symplec-
tic integrator for the MMST variables85,86 for a given nuclear time
step, and these mapping variables are transformed based on Eq. (43)
between two adjacent nuclear time steps due to the change of the QD
basis. The population dynamics using all MQC and mapping meth-
ods were averaged over 5000 trajectories, although 3000 trajectories
were enough to produce the basic trend of the polariton dynamics
(see Fig. S3 in the supplementary material). The light–matter cou-
pling strength gc was chosen to be 0.001 and 0.005, according to our
previous work.23

We also benchmark the results of non-adiabatic mapping
dynamics approaches with commonly used MQC approaches,
including the Ehrenfest dynamics and the FSSH method. The details
of these two MQC approaches are provided in Appendix C. In par-
ticular, the Ehrenfest dynamics is equivalent to choosing γ = 0 in the
mapping theory [see Eq. (34)] and an initial action-angle variables
condition [see Eqs. (37) and (38)] of εb = δab (for the initially occu-
pied state ∣a⟩) and θb = 0 (for all state ∣b⟩). One can thus use the same
QD scheme and the mapping equation to obtain the results of the
Ehrenfest dynamics.87

IV. RESULTS
Figure 2 presents the population dynamics of the adiabatic-

Fock states simulated using the approximate methods (open circles),
including the MQC approaches (Ehrenfest and FSSH) and the map-
ping dynamics methods (γ-SQC and spin-LSC), compared to the
numerically exact results (solid lines). The light–matter coupling
strength is chosen to be gc = 0.001 a.u. The system is initially pre-
pared in the ∣e0⟩ state and decays quickly into the ∣g1⟩ state during
the first ∼12 fs due to the large light–matter coupling strength from
the large transition dipole moment (μeg) between adiabatic elec-
tronic state ∣g⟩ and ∣e⟩ [as shown in Fig. 1(d)]. Then, the system
starts to oscillate between ∣e0⟩ and ∣g1⟩ until about 20 fs. All of the
MQC and mapping dynamics methods can describe the above pro-
cess reasonably well compared to the exact results. After that, all
the dynamics results (including the exact one) show a fast popula-
tion increase of the ∣g0⟩ state, which is due to the electronic NAC
deg that directly couples the ∣e0⟩ state to ∣g0⟩ state (gold lines). All
of the approximate methods can qualitatively describe such a trend,
but the MQC methods [(a) and (b)] are less accurate compared to
the mapping-based methods [(c) and (d)], in terms of the rising
of the ∣g0⟩ population as well as its long time plateau. Moreover,

FIG. 2. The population dynamics of the adiabatic-Fock states in Shin–Metiu-cavity
model obtained from (a) Ehrenfest dynamics, (b) FSSH approach, (c) γ-SQC
method, and (d) spin-LSC dynamics. The population dynamics are obtained
with the approximate methods (open circles) and exact quantum propagation
(solid lines). Two electronic states and two Fock states are considered in the
simulation, and the light–matter coupling strength gc = 0.001 a.u.

both Ehrenfest and FSSH dynamics predict a significant population
transfer from ∣g1⟩ to ∣e1⟩ state [(a) and (b)] as an artifact that is
not shown in the exact dynamics results. In contrast, the γ-SQC
and spin-LSC methods perform much better, where the population
transfer process from ∣g1⟩ to ∣e1⟩ state is largely suppressed [(c) and
(d)]. Overall, the mapping methods outperform the MQC methods
in this small light–matter coupling case. It is worth mentioning that
the population dynamics results obtained with the FSSH method can
be significantly improved if one uses the estimator specifically for
computing diabatic populations.88 We have provided details of this
approach and numerical results in Appendix C. Even so, the FSSH
method is still facing many challenges from the improper treatment
of the quantum coherence and frustrated hop problems, which have
been widely discussed.25,27,89,90

Figure 3 presents the polariton population dynamics with the
coupling strength gc = 0.005 a.u. The oscillation between ∣e0⟩ and
∣g1⟩ state population appears much earlier and faster compared
to the gc = 0.001 results due to the larger light–matter coupling
between ∣e0⟩ and ∣g1⟩ states [see Eq. (5)]. Furthermore, the ∣g0⟩ and
∣e1⟩ states are also getting populated at an earlier time, due to the
permanent dipole μgg and μee that couples ∣g1⟩ state to ∣g0⟩ state and
∣e0⟩ state to ∣e1⟩ state, respectively. Similar to the gc = 0.001 case, all
the MQC and mapping dynamics provide a reasonable accuracy for
the population dynamics at a short time, while the mapping meth-
ods perform much better than the MQC methods at a longer time.
In addition, the spin-LSC method outperforms γ-SQC method in the
description of ∣g0⟩ and ∣e0⟩ state population after t = 20 fs, as shown
in Figs. 3(c) and 3(d).

Until now, all of our simulations are restricted in the Hilbert
subspace formed by two electronic states (∣g⟩ and ∣e⟩) and two pho-
tonic Fock states (∣0⟩ and ∣1⟩). The system could explore a larger
Hilbert space due to the increasing light–matter coupling strength.
Thus, we systematically check the polariton dynamics using the
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FIG. 3. The population dynamics of the adiabatic-Fock states in Shin–Metiu-cavity
model obtained from (a) Ehrenfest dynamics, (b) FSSH approach, (c) γ-SQC
method, and (d) spin-LSC dynamics. The population dynamics are obtained
with the approximate methods (open circles) and exact quantum propagation
(solid lines). Two electronic states and two Fock states are considered in the
simulation, and the light–matter coupling strength gc = 0.005 a.u.

exact wavepacket dynamics method with a larger number of elec-
tronic adiabatic states and Fock states, as shown in Figs. S1 and
S2 in the supplementary material. The results show that, for the small
light–matter coupling strength case (gc = 0.001 a.u), truncation to
the Hilbert subspace formed by two electronic states and two Fock
states is enough to give an accurate description of the population
dynamics for the SM model studied in this work. However, for the
larger coupling strength case (gc = 0.005 a.u), the polariton dynam-
ics will converge when including four adiabatic electronic states (∣g⟩,
∣e⟩, ∣ f ⟩, and ∣h⟩ with energies in ascending order) and four Fock
states (∣0⟩, ∣1⟩, ∣2⟩, and ∣3⟩ with photon number in ascending order).

To further test the performance of the mapping methods
(γ-SQC and spin-LSC) as well as the MQC methods (Ehrenfest and
FSSH) in such a large Hilbert subspace, which includes 16 states
formed by the tensor product of four electronic states (∣g⟩, ∣e⟩,
∣ f ⟩, and ∣h⟩) and four Fock states (∣0⟩, ∣1⟩, ∣2⟩, and ∣3⟩). Figure 4
presents the results of using Ehrenfest dynamics [(a) and (b)], FSSH
[(c) and (d)], γ-SQC [(e) and (f)] and spin-LSC [(g) and (h)]. Besides
the adiabatic-Fock states already appear in the four-state subspaces
(∣g0⟩, ∣e0⟩, ∣g1⟩, and ∣e1⟩), we can also see some other states (∣h0⟩,
∣ f 0⟩, ∣g2⟩, and ∣ f 1⟩) are populated due to the increasing light–matter
coupling strength. All of the MQC (Ehrenfest, FSSH) and mapping
(γ-SQC and spin-LSC) dynamics results provide accurate agreement
with the exact one in the short time (<20 fs). After that, all of the
methods start to generate less accurate results (especially for the
∣g0⟩ population). Note that both γ-SQC and spin-LSC perform less
accurately compared to the situation in a smaller Hilbert subspace
(Fig. 3). This is because both γ-SQC and spin-LSC are sensitive to the
number of states of the system. For γ-SQC, more states means less
trajectory landed in the population action window.91 For spin-LSC,
the ZPE correction Γ [Eq. (42)] explicitly depends on the number
of states N . This suggests a need for the future development of

FIG. 4. The population dynamics of the adiabatic-Fock states with [(a) and (b)]
Ehrenfest dynamics, [(c) and (d)] FSSH approach, [(e) and (f)] γ-SQC method, and
[(g) and (h)] spin-LSC dynamics. The population dynamics are obtained with the
approximate methods (open circles) and exact quantum propagation (solid lines).
Four adiabatic electronic states (∣g⟩, ∣e⟩, ∣ f⟩, and ∣h⟩ with energies in ascending
order) and four Fock states (∣0⟩, ∣1⟩, ∣2⟩, and ∣3⟩ with photon number in ascending
order) are considered in the simulations and the light–matter coupling strength
is gc = 0.005 a.u. Only the adiabatic-Fock states with observable populations of
more than 0.01 are plotted.

more accurate dynamics approaches. The current work, neverthe-
less, paves the way for those future methods to be directly used for
simulating on-the-fly polariton quantum dynamics.

V. CONCLUSIONS
In this work, we generalize the quasi-diabatic (QD) propaga-

tion scheme44,45,47 to simulate the non-adiabatic polariton dynamics
in molecule–cavity hybrid systems. The adiabatic-Fock states, which
are the tensor product states of the adiabatic electronic states of
the molecule and photon Fock states, are used as the locally well-
defined diabatic states for the dynamics propagation.45,47 These
locally well-defined diabatic states allow using any diabatic quantum
dynamics methods for dynamics propagation, and the definition of
these states will be updated at every nuclear time step. The benefit
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of using such adiabatic-Fock states is that one can conveniently
obtain the electronic adiabatic states energies, the nuclear gradi-
ent, the dipole moments and NACs between these states, which are
necessary ingredients in molecular cavity QED simulations.

We use the recently developed non-adiabatic mapping dynam-
ics approaches, γ-SQC35 and spin-LSC,37 to investigate polariton
dynamics of a Shin–Metiu model coupled to an optical cavity.23,49

To benchmark the results of the obtained polariton dynamics, we
performed simulations using the Ehrenfest dynamics and the FSSH
approaches, as well as the numerically exact polariton wavepacket
propagation. The results show that the mapping methods can accu-
rately describe the population dynamics of the molecule–cavity
system system at both short- and long-time dynamics compared
to the exact results. In addition, the mapping methods outperform
the Ehrenfest and FSSH approaches for long-time dynamics. The
numerical results also demonstrate that the performance of the map-
ping methods (γ-SQC and spin-LSC) becomes less accurate with an
increased number of states in the simulation, indicating the need for
future theoretical development.

We envision that the theoretical development in this work will
provide the emerging polariton chemistry field with a general the-
oretical tool that enables direct ab initio on-the-fly simulations of
polariton photochemical processes. We also anticipate that the the-
oretical developments in this work will enable many recently devel-
oped diabatic quantum dynamics approaches to directly simulate
polariton quantum dynamics.

SUPPLEMENTARY MATERIAL

See the supplementary material for additional results of the
convergence test for the number of trajectories and the number of
adiabatic electronic states and Fock states.
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APPENDIX A: DETAILS OF THE γ-SQC APPROACH

For practical reasons, the delta functions in Eq. (39) are broad-
ened using well-explored window functions, which can be used
to bin the electronic action variables in action-space. The triangle
window35,72 is expressed as

Wb(ε) = w1(εb)
N

∏
b′≠b

w0(εb, εb′), (A1)

where the window functions are defined as

w1(ε) =
⎧⎪⎪
⎨
⎪⎪⎩

(2 − ε)2−N , 1 < ε < 2

0, else
(A2)

and

w0(ε, ε′) =
⎧⎪⎪
⎨
⎪⎪⎩

1, ε′ < 2 − ε
0, else,

(A3)

and trajectories are assigned to state b at time t if εb ≥ 1 and εb′ < 1
for all b′ ≠ b. The ZPE parameter in the standard SQC method with
triangle windowing is γ = 1/3.

The time-dependent population of the state ∣b⟩ is computed
with Eq. (39). Using the window function estimator, the total pop-
ulation is no longer properly normalized due to the fraction of
trajectories that are outside of any window region at any given
time.31 Thus, the total population must be normalized31 with the
following procedure:

ρbb(t)/
N

∑
a=1

ρaa(t)→ ρbb(t). (A4)

In the γ-SQC approach,35 it was proposed that the mapping
ZPE should be chosen in such a way as to constrain the initial force
to be composed purely from the initially occupied state.35 This new
scheme has shown to provide a significant improvement for photo-
dissociation problems with coupled Morse potentials35 and has been
combined with the kinematic momentum approach92 to carry out
on-the-fly simulations of the methaniminium cation.71 The basic
logic of γ-SQC is to choose an γb for each state ∣b⟩ in every given indi-
vidual trajectory such that the initial population is forced to respect
the initial electronic excitation focused onto a single excited state. If
the initial electronic state is ∣a⟩,

γb = εb − δba, (A5)
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or equivalently,

δba = εb − γb, (A6)

where the {εb} are uniformly sampled inside the window function
[Eq. (A1)], and then the γb are chosen to satisfy Eq. (A6).

These γb will be explicitly used in the EOMs in Eqs. (35) and
(36), and, in particular, the nuclear forces are now

F = −
1
2∑ab
∇Vab(R)(papb + qaqb − 2γbδba), (A7)

ensuring the initial forces (at t = 0) are simply F = −∇Vaa(R). Pre-
viously, without any adjustments to γb, the chosen values for γb were
only dependent on the windowing function itself, i.e., γb = 0.366 for
the square Windows and γb = 1/3 for the triangle windows. With the
above γ-correction method,35 each individual trajectory will have its
own state-specific γb for state ∣b⟩ that is completely independent of
the choice of window function.

APPENDIX B: DETAILS OF THE ADIABATIC
ELECTRONIC CALCULATION AND THE EXACT
QUANTUM DYNAMICS SIMULATIONS

To calculate the electronic properties of the SM model, we use
the Sinc DVR basis75 to represent the electronic adiabatic wavefunc-
tion and solve Eq. (3). The grid of DVR is uniform with spacing
Δx = 0.147 in the range [−22, 22] a.u. To test the convergence of
grid points, we doubled the number of grid points and the results
were identical. The matrix elements of the electronic Hamiltonian
Ĥ el in this grid basis {∣ri⟩} are given by

⟨ri∣Ĥ el∣rj⟩ = ⟨ri∣T̂r + V̂ eN(r̂, R) + V̂ NN(R)∣rj⟩

= ⟨ri∣T̂r ∣rj⟩ + [V̂ eN(rj, R) + V̂ NN(R)]δij, (B1)

where the ⟨ri∣T̂r ∣rj⟩ is given analytically75 as follows:

⟨ri∣T̂r ∣rj⟩ =
h̵2

2m
⋅

π2

3(Δr)2 (1 +
2

N2 )δij

+
h̵2

2m
⋅

2(−1)j−iπ2

(ΔrN sin( π(j−i)
N ))

2 (1 − δij). (B2)

Directly diagonalizing the matrix of Ĥ el [in Eq. (B1)] at a given
nuclear (proton) position R in this grid basis gives the accurate
adiabatic electronic states

∣ϕα(R)⟩ =∑
i

cαi (R)∣ri⟩, (B3)

where cαi (R) is the expansion coefficient, which is purely real for the
adiabatic electronic states considered here.

A key ingredient for the QD propagation scheme is the overlap
integral in Eqs. (23a), (23b), and (32), which involve the overlaps
between two adiabatic states associated with two different reference
geometries. These integrals are conveniently calculated because all
of the adiabatic states are represented with the common DVR grids
basis as follows:

⟨ϕα(R0)∣ϕβ(R1)⟩ =∑
i,j

cαi (R0) ⋅ c
β
j (R1)⟨ri∣rj⟩. (B4)

Using these bases, the matrix elements for the dipole moment
operator [Eq. (19)] are calculated as

μγν(R) =∑
ij

cγi (R) ⋅ c
ν
j (R)⟨ri∣(R − r̂)∣rj⟩

=∑
ij

cγi (R) ⋅ c
ν
j (R) ⋅ (R − ri)δij. (B5)

Using ∣ϕα(R)⟩ and ∣ϕβ(R)⟩ in the grid basis, we can directly
evaluate the nuclear gradient ⟨ϕλ∣∇Ĥ en∣ϕν⟩ [Eq. (25)] as follows:

⟨ϕλ(R)∣∇Ĥ en(R)∣ϕν(R)⟩ =∑
ij

cλi (R) ⋅ c
ν
j (R)⟨ri∣∇Ĥ en(R)∣rj⟩, (B6)

where the∇Ĥ en(R) is evaluated analytically using the expression of
Ĥ en(R) in Eq. (44). This gives the adiabatic gradient∇Eλ (for λ = ν)
and derivative coupling (for λ ≠ ν) as dλν = ⟨ϕλ∣∇Ĥ en∣ϕν⟩/(Eν − Eλ),
as indicated in Eq. (44). The nuclear gradient ⟨ϕλ∣∇Ĥ en∣ϕν⟩ is also
one of the key ingredient in the QD propagation.

Furthermore, the nuclear gradient expression in Eq. (29) for
a polariton system requires the derivative on the dipole matrix
[Eq. (B5)]. This requires the evaluation of the derivative of the
expansion coefficients ∇cγi (R) in Eq. (B5). Instead of evaluating
these derivatives, as been commonly done in electronic structure cal-
culations,22 here, we evaluate this derivative on dipole numerically as
follows:

∇μγν(R) ≈
μγν(R + ΔR) − μγν(R − ΔR)

2ΔR
. (B7)

To solve the exact quantum dynamics, we represent the total
wavefunction of the hybrid system as ∣Ψξ⟩ = ∑i,k cξik∣ψi(Rk)⟩⊗ ∣Rk⟩,
where {∣Rk⟩} is the DVR grid basis for the nucleus, and the
∣ψi(Rk)⟩ = ∣ϕα(Rk)⟩⊗ ∣n⟩ is the adiabatic-Fock basis [Eq. (8)], where
the electronic adiabatic basis ∣ϕα(Rk)⟩ is obtained by solving the
electronic eigenequation (Eq. (3)) using the DVR basis for the elec-
tronic DOF at the nuclear configuration Rk. The coefficients for
the total wavefunction cξik and the eigenvalue of the total Hamilto-
nian Ĥ [Eq. (1)] will be obtained by solving the time-independent
Schödinger equation Ĥ∣Ψξ⟩ = Eξ ∣Ψξ⟩. We use the Sinc DVR basis75

for the nuclear DOF and solve the above eigenvalue problem to
obtain all the eigenvalues and eigenstates. We use finer grid points
for nucleus Δx = 0.016 in the range [−8, 8]. To test the convergence
of grid points, we doubled the number of grid points and the results
were identical. The time evolution dynamics is obtained by unitary
evolution ∣Φ(t)⟩ = ∑ξ Cξ exp(− i

h̵ Eξt)∣Ψξ⟩, where Cξ is the projec-
tion of initial total wavefunction onto the ∣Ψξ⟩ as Cξ = ⟨Ψξ ∣Φ(0)⟩,
with the initial wavefunction ∣Φ(0)⟩ expressed in Eq. (45). The
details of the exact polariton dynamics calculation can also be found
in our recent work.23

APPENDIX C: DETAILS OF THE EHRENFEST
AND SURFACE HOPPING SIMULATIONS

Besides the mapping dynamics methods (γ-SQC and spin-
LSC), we also apply the commonly used Ehrenfest and Tully’s
FSSH17,18 algorithms to run polariton dynamics. Details can be
found in our previous work that develops new gradient expres-
sions for QED simulation with the MQC methods.23 Here, we briefly
present these approaches for the completeness of this work.
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In the Ehrenfest dynamics, the wavefunction of the quantum
subsystem (electronic–photonic DOFs) is written as

∣Ψ(r; R(t))⟩ =∑
i

ci(t)∣ψi(R(t))⟩, (C1)

where ∣ψi(R(t))⟩ = ∣ϕα(R(t))⟩⊗ ∣n⟩ is the adiabatic-Fock state
basis [Eq. (8)]. The quantum subsystem is described by the
time-dependent Schödinger equation (TDSE)

ih̵
∂

∂t
∣Ψ(r; R(t))⟩ = V̂ ∣Ψ(r; R(t))⟩. (C2)

The classical subsystem (nuclear DOF) is propagated using the
Newton’s EOM, where the nuclear force is evaluated from the
time-dependent average potential (mean field)

F = −c†
[∇V]c, (C3)

where c† is the transpose of the coefficient column vector c expressed
as follows:

c†
= (c1(t), c2(t), . . . , cN(t)). (C4)

The nuclear gradient matrix is expressed as

[∇V] ≡ ∇[V] − [V][d] + [d][V], (C5)

where [V] and [d] are the matrix of V̂ and derivative coupling
operator in the adiabatic-Fock state basis, respectively. The full
derivation of the gradient can be found in our previous work.23

In the FSSH dynamics, we expand the time-dependent wave
function in the polaritonic basis ∣EI(R(t))⟩ [see definition in
Eq. (11)]

∣Ψ(r; R(t))⟩ =∑
I

cI(t)∣EI(R(t))⟩, (C6)

where cI is the expansion coefficient, which will be used to com-
pute the fewest switching probability. Here, the nuclear force comes
from only one specific polariton state ∣EI(R(t))⟩ [eigenstate of V̂ , see
Eq. (11)] as follows:

F = −∇EI , (C7)

where EI is the energy of the active adiabatic polariton state, and
I is the active state index, which will be determined at every nuclear
propagation step. The nuclear gradient is

∇EI =∑
jk
⟨EI ∣ψj⟩⟨ψj∣∇V ∣ψk⟩⟨ψk∣EI⟩, (C8)

where the matrix element of∇V is expressed in Eq. (C5). The details
of the nuclear gradient in the polariton basis can be found in our
previous work.23

According to the “fewest switches” algorithm,17 the probability
of switching (probability flux) from the active polariton state ∣EI⟩ to
any other polariton state ∣EJ⟩ during the time interval between t and
t + δt is

fIJ = −
2 Re[(ρ pl

JI )
∗
⋅ Ṙ ⋅ dJI(R)] δt

ρ pl
II

, (C9)

where ρ pl
IJ (t) is the reduced density matrix element in the polariton

basis expressed as follows:

ρ pl
IJ (t) = cI(t)c∗J (t). (C10)

Since the probability should be positive definite, one sets14 fIJ to 0
if fIJ < 0. The non-adiabatic transition, i.e., stochastic switch from
the currently occupied state ∣EI⟩ to another state ∣EK⟩, occurs if the
following condition is satisfied:

K

∑
J=1

fIJ < ζ <
K+1

∑
J=1

fIJ , (C11)

where ζ is a uniform randomly generated number between 0 and
1 at each nuclear time step. If the transition is accepted, the active
state is set to the new adiabatic state ∣EK⟩, while the velocities of the
nuclei are rescaled along the direction of the NAC vector dIK(R)
in order to conserve the total energy.18 More details of perform-
ing FSSH simulation of the polariton dynamics can be found in our
previous work.23

For the Ehrenfest dynamics and FSSH approach, we use the
fourth-order Runge–Kutta method to integrate the TDSE and the
velocity Verlet algorithm to integrate Newton’s EOM. The time step
for the nuclear motion is 0.1 a.u. and the sub-step for solving the
TDSE of the electronic–photonic subsystem is 0.001 a.u. We have
carefully checked that the total energy is well conserved for all the
trajectories. The initial condition is described by Eq. (45), where the
nuclear DOF is sampled from the corresponding Wigner density
described in Eq. (46). For Ehrenfest dynamics, the initial coefficients
ci(0) for the state ∣ψi⟩ = ∣e0⟩ is set to be one, and the rest of the coef-
ficients are set to be zero. These {cj(0)} can be unitary transformed
into the coefficients {cI(0)} for each nuclear initial configuration
described in Eq. (46). For the FSSH simulation, one needs to choose
an initial active state, and the initial state of the quantum subsys-
tem ∣e(R), 0⟩ is not one of the eigenstates ∣EI(R)⟩. We thus follow
the previous work88,93 and use the Monte Carlo scheme to ran-
domly choose the initial active state ∣EI(R)⟩ for each trajectory,
based on the magnitude of ∣⟨EI(R)∣e(R), 0⟩∣2 for a given trajectory
that has the nuclear configuration at R sampled from the Wigner
density [Eq. (46)].

When computing the population dynamics in a representation
that is not the adiabatic states of V̂ , there is no unique way to cal-
culate them in the FSSH approach.88 In the main text, we present
the populations of the adiabatic-Fock states using the expansion
coefficients cI(t) in Eq. (C6). There are, of course, alternative ways
to compute populations of these adiabatic-Fock states.88 Below, we
explore the alternative ways to compute them.

For clarity, we denote the reduced density matrix in the
adiabatic-Fock basis as ρ af

ij (t), and ρ pl
IJ (t) is the reduced density

matrix in the polariton basis [expressed in Eq. (C10)]. To get the
adiabatic-Fock state population of the ∣ψi⟩ state ρ af

ii from the FSSH
simulation, the most straightforward way (as the results presented in
the main text) is through following unitary transformation:

[ρ af
(Rl(t))] = U[ρ pl

(Rl(t))]U
†, (C12)
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where [ρ pl Rl(t))] is the reduced density matrix in the polariton
basis along a given nuclear trajectory Rl(t), with l as the label of the
trajectory, and the elements as

ρ pl
IJ (Rl(t)) = cI(t)c∗J (t). (C13)

Furthermore, U(Rl(t)) is the matrix that diagonalize the matrix
[V(Rl(t))] as shown in Eq. (13), along the same trajectory Rl(t).
The adiabatic-Fock state population is then obtained from trajectory
average as follows:

Pi(t) =
1
N

N

∑
l
[U[ρ pl

(Rl(t))]U
†
]

ii
, (C14)

where N is the total number of the trajectories. This is the estimator
used in the FSSH calculation presented in the main text.

For FSSH, there are two other commonly used choices88 to cal-
culate the populations that are not in an adiabatic representation.
These methods vary on how to calculate the polaritonic state den-
sity matrix [ρpl

(Rl(t))]. The first choice is based on the active state

FIG. 5. Population dynamics of the adiabatic-Fock states obtained from the FSSH
method (open circles) and the exact quantum dynamics propagation (solid lines),
using different population estimators. [(a) and (b)] Method 1; [(c) and (d)] method 2;
and [(e) and (f)] method 3. The results obtained using method 2 are presented
in the main text of this work. The light–matter coupling strength is set to be
[(a), (c), and (e)] gc = 0.001 a.u. and [(b), (d), and (f)] gc = 0.005 a.u.

index and ignores the polaritonic state coefficients {cI(t)} and the
density matrix elements are written as

ρ pl
IJ (Rl(t)) =

⎧⎪⎪
⎨
⎪⎪⎩

δIK , I = J
0, I ≠ J,

(C15)

where K is the active polaritonic state. This method explicitly
assumes that the off-diagonal elements of the polaritonic state den-
sity matrix are zero, which is often not a good one. The adiabatic-
Fock state population is then obtained from the same transformation
described in Eq. (C12), and the ensemble average over all trajectories
is computed as described in Eq. (C14).

The other choice88 (motivated by the mixed quantum-classical
Liouville approach) is to calculate the diagonal elements of ρpl using
the active state index, and calculate the off-diagonal elements using
the polaritonic state expansion coefficients {cI(t)}

ρ pl
IJ (Rl(t)) =

⎧⎪⎪
⎨
⎪⎪⎩

δIK , I = J
cIc∗J , I ≠ J,

(C16)

where K is the active index. The adiabatic-Fock state popula-
tion is then obtained from the same transformation described in
Eq. (C12), and the ensemble average over all trajectories as described
in Eq. (C14).

Following the same notation as used in Ref. 88, we refer to the
choice in Eq. (C15) as method 1, the choice in Eq. (C13) as method
2 (same as the FSSH results presented in the main text), and the
choice in Eq. (C16) as method 3. The FSSH dynamics results based
on these three methods are presented in Fig. 5. We can see that
method 3 performs much better than methods 1 and 2, consisting
with the conclusion in Ref. 88.
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