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Abstract

When molecules are coupled to an optical cavity, new
light-matter hybrid states, so-called polaritons, are
formed due to quantum light-matter interactions. With
the experimental demonstrations of modifying chemical
reactivities by forming polaritons under strong light-
matter interactions, theorists have been encouraged to
develop new methods to simulate these systems and
discover new strategies to tune and control reactions.
This review summarizes some of these exciting theoret-
ical advances in polariton chemistry, in methods rang-
ing from the fundamental framework to computational
techniques and applications spanning from photochem-
istry to vibrational strong coupling. Even though the
theory of quantum light-matter interactions goes back
to the mid-twentieth century, the gaps in the knowledge
of molecular quantum electrodynamics (QED) have
only recently been filled. We review recent advances
made in resolving gauge ambiguities, the correct form
of different QED Hamiltonians under different gauges,
and their connections to various quantum optics models.
Then, we review recently developed ab-initio QED ap-
proaches which can accurately describe polariton states
in a realistic molecule-cavity hybrid system. We then
discuss applications using these method advancements.
We review advancements in polariton photochemistry
where the cavity is made resonant to electronic transi-
tions to control molecular non-adiabatic excited state
dynamics and enable new photochemical reactivities.
When the cavity resonance is tuned to the molecular vi-
brations instead, ground-state chemical reaction modifi-
cations have been demonstrated experimentally, though
its mechanistic principle remains unclear. We present
some recent theoretical progress in resolving this mys-
tery. Finally, we review the recent advances in under-
standing the collective coupling regime between light

and matter, where many molecules can collectively cou-
ple to a single cavity mode or many cavity modes. We
also lay out the current challenges in theory to explain
the observed experimental results. We hope that this
review will serve as a useful document for anyone who
wants to become familiar with the context of polariton
chemistry and molecular cavity QED and thus signifi-
cantly benefit the entire community.
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1 Introduction

Coupling matter (atoms, molecules, or solid-state ma-
terials) to the quantized electromagnetic field inside an
optical cavity creates a set of new photon-matter hy-
brid states, so-called polariton states.1–3 These polari-
ton states have delocalized excitations among molecules
and the cavity mode, which have been shown to facili-
tate new chemical reactivities.1,3,4 Theoretical investi-
gations play a crucial role in understanding new prin-
ciples in this emerging field and have suggested inter-
esting reaction mechanisms enabled by cavity quantum
electrodynamics (QED).5–14

Unlike the traditional coherent control strategies,15,16

polariton chemistry does not rely on fragile electronic
coherence15,16 and is robust to decoherence.10 Com-
pared to the classical laser-matter interactions which
operate with a large number of photons, cavity QED
enables the hybrid system to initiate chemical reactions
even without photons initially present in the cavity.3

Thus, polariton chemistry provides a new strategy to
control chemical reactivity in a general way by tun-
ing the fundamental properties of photons and provides
a new paradigm for enabling chemical transformations
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Figure 1: Schematic illustrations of commonly used
optical cavities in molecular polariton research. (a)
Plasmonic cavity: A single molecule coupled to a plasmonic
field. (b) Fabry–Pérot cavity: An ensemble of molecules
coupled to a quantized vacuum radiation field. In both pan-
els, the arrows and ê indicate the typical cavity field polar-
ization directions that matter couple to. Panels (c) and (d)
depict the polariton spectrum for a single molecule coupled
to cavity (depicted in panel a) and N molecules collectively
coupled to a cavity (depicted in panel b). (e) Molecular
absorption, and (f) the Polariton absorption. For a single
molecule case, there is no dark state (see panel c), but for
the N -molecule collective coupling case, one can observe the
dark states due to their nearly zero transition dipole.

that can profoundly impact catalysis, energy produc-
tion, and the field of chemistry at large.

Simulating the time-dependent polariton quantum
dynamics of the hybrid matter-field systems is often
a necessary and essential task, as these polariton pho-
tochemical reactions often involve a complex dynami-
cal interplay among the electronic, nuclear, and pho-
tonic degrees of freedom (DOFs). However, accurately
simulating the polaritonic quantum dynamics remains
a challenging task and is beyond the paradigm of tra-
ditional photochemistry, which does not include quan-
tized photons, and quantum optics which does not have
a well-defined theory to include the influence of nuclear
vibrations.17 Over the past years, enormous progress
has been made to address this interdisciplinary chal-
lenge. We have witnessed how electronic structure the-
ory (Sec. 3), non-adiabatic quantum dynamics (Sec. 4),
and statistical mechanics (rate constant theory, in par-
ticular, Sec. 5) have actively participated in this exciting

field in the past few years.
Polariton chemistry has become a fast-growing com-

munity, with exciting progress occurring daily. We feel
this is the right time to review this exciting progress
and encourage more people from both chemistry and
quantum optics to continuously contribute to this ever-
growing field. We hope that this review will serve as a
useful document for anyone who wants to get familiar
with the context of polariton chemistry and molecular
cavity QED and will significantly benefit the entire com-
munity.

1.1 Jaynes-Cummings Model in Cavity
QED

In quantum optics, atoms/molecules (modeled as two-
level systems) coupled to a single mode in an optical
cavity are a well-studied subject. This study has led
to well-known model Hamiltonians, such as the Jaynes-
Cummings model18 and the Tavis-Cummings model.19

Since these two models are also widely used in recent
investigations of polariton chemistry, here we briefly dis-
cuss them and the intuitive insights they provide. We
consider a single emitter with two electronic states |g⟩
and |e⟩ with the following matter Hamiltonian

ĤM = Eg|g⟩⟨g| + Ee|e⟩⟨e|, (1)

where Eg and Ee are the ground and excited state en-
ergy. The well-known Jaynes-Cummings (JC) Model18

is used to describe the single emitter-cavity hybrid sys-
tems and has the following form

ĤJC = ĤM + ℏωc

(
â†â+

1

2

)
+ ℏgc(σ̂†â+ σ̂â†) (2)

where σ† = |e⟩⟨g| and σ = |g⟩⟨e| are the creation and
annihilation operators for the molecular excitation, re-
spectively, and â† and â are raising and lowering op-
erators of the cavity field, respectively, with the cav-
ity frequency ωc. The term ℏωc(â

†â + 1
2 ) describes the

cavity field (under the single mode approximation); its
eigenstate |n⟩ describes the number of photons inside
the empty cavity (without the presence of the emitter),
where n = ⟨n|â†â|n⟩. Lastly, gc is the coupling strength
between the matter and the cavity field, which is often
expressed as

gc =

√
ℏωc

2ϵV
ê · µeg, (3)

where µeg is the transition dipole vector between the
|g⟩ and |e⟩ states, ê is the cavity field polarization di-
rection (with the hat indicating its status as a unit vec-
tor), ϵ is the permittivity inside the cavity (for vacuum,
ϵ = ϵ0), and V is the effective cavity quantization vol-
ume. A rigorous derivation of the JC model Hamilto-
nian from the minimal coupling Hamiltonian (Eqn. 35)
can be found in Sec. 2.5. Experimentally, such single
emitter-cavity strongly coupled systems can be real-
ized in plasmonic cavity setups20 as shown schemati-
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cally in Fig. 1a. This Jaynes-Cummings Hamiltonian
is used ubiquitously across the field of quantum optics,
from quantum computing21 applications to fundamen-
tal physics experiments.22,23

The eigenstates of the JC Hamiltonian can be ob-
tained analytically, using a convenient basis of matter
and photon states, |g⟩⊗|n⟩ ≡ |g, n⟩ and |e⟩⊗|n⟩ ≡ |e, n⟩
for n = 0, 1, .... The polariton ground state of the hy-
brid system is |g, 0⟩, and the nth excited upper polariton
state (|+, n⟩) and the nth excited lower polariton state
(|−, n⟩) are

|+, n⟩ = cos Θ |e, n⟩ + sin Θ |g, n+ 1⟩ , (4a)

|−, n⟩ = − sin Θ |e, n⟩ + cos Θ |g, n+ 1⟩ , (4b)

where Θ = 1
2 tan−1[2ℏgc

√
n+ 1/(ℏωc−∆E)] is the mix-

ing angle, and ∆E = Ee − Eg is the energy difference
between the ground and excited states. The eigenener-
gies of the polariton states are

E±(n) =
1

2
(Eg + Ee) + (n+ 1)ℏωc

± 1

2

√
(∆E − ℏωc)2 + Ω2

n, (5)

where Ωn = 2ℏgc
√
n+ 1 is the nth Rabi frequency

(which is the Rabi splitting under the resonant condi-
tion when ∆E − ℏωc = 0). Note that when the light-
matter detuning (∆E − ℏωc) is zero, sin Θ = cos Θ =
1/
√

2, and E±(n) = Eg + ℏωc(n + 3/2) ± Ωn/2. This
is the resonance case, which is schematically depicted
in Fig. 1c for the n = 0 case. A full diagram of JC
polariton eigenstates with all n is commonly referred to
as the Jaynes-Cummings ladder (eg, see Fig. 1 in Ref.
17). In the JC model, the difference in energy between
the upper and lower polariton states is called the “Rabi
splitting”

ΩR(n) ≡ E+(n) − E−(n) =
√

(∆E − ℏωc)2 + Ω2
n. (6)

For a resonant light-matter coupling, ∆E − ℏωc = 0,
ΩR(n) = Ωn = 2ℏgc

√
n+ 1, which scales linearly with

the coupling strength gc and the square root of the “pho-
ton number” n, providing a simple and intuitive way to
consider how a system changes as a function of coupling
strength. Fig. 1c depicts the situation for n = 0.

The JC Hamiltonian in Eq. 2 and its eigenenergies
(Eq. 5) correspond to the ideal cavity situation where
the cavity photon loss and the matter de-excitation pro-
cess (eg, due to the non-radiative decay) are not consid-
ered. In a realistic experimental setup, the cavity pho-
ton only has a finite lifetime before it leaks outside the
cavity. The condition to achieve strong coupling, (i.e.
where one can observe the Rabi splitting in absorption
spectra) depends on the relation between the excitation
lifetimes in the cavity and the coupling strength gc.

One can phenomenologically introduce different
sources of dissipation that lead to a spectroscopic broad-
ening of the light-matter eigenspectrum. Let us denote
the loss rate for the cavity photon as κ, and the decay

rate of the matter excitation as γ (see Fig. 14a for a
schematic illustration). For the Markovian dissipation
at zero temperature, the cavity-matter density matrix
for the JC model is given with the quantum Liouville
equation ˙̂ρ = − i

ℏ [HJC, ρ̂] + κ
2Lâ(ρ̂) + γ

2Lσ̂(ρ̂) where
Lâ(ρ̂) = 2âρ̂â† − â†âρ̂ − ρ̂â†â is the dissipative part
based on the Lindblad jump operator â with a similar
expression with the matter DOFs for Lσ̂(ρ̂). For the JC
model, the approximate evolution of the density matrix
under such dissipation can be captured by defining an
effective Hamiltonian

Ĥ′
JC = ĤJC − iℏ

κ

2
â†â− iℏ

γ

2
σ̂†σ̂, (7)

such that ˙̂ρ ≈ i
ℏ (Ĥ′

JC ρ̂−ρ̂Ĥ
′†
JC) when ignoring the 2âρ̂â†

and 2σ̂ρ̂σ̂† terms in Lâ(ρ̂) and Lσ̂(ρ̂). Similar to the JC
model Hamiltonian, when including dissipation, Ĥ′

JC is
block-diagonalized within the {|e, n⟩, |g, n+1⟩} subspace
and the matrix elements of Ĥ′

JC within this subspace
are written as

Ĥ′
JC =

[
Eg + ℏωc − iℏ(n+ 1)κ

2 ℏgc
√
n+ 1

ℏgc
√
n+ 1 Ee − iℏγ

2

]
+
(
n+

1

2

)
ℏωc1̂, (8)

where 1̂ = |g, 1⟩⟨g, 1| + |e, 0⟩⟨e, 0| is the identity opera-
tor (in this electronic-photonic subspace). The complex
eigenvalues of Ĥ′

JC are obtained by diagonalizing the
above 2 × 2 matrix as,24–28

E±(n) =
1

2
(Eg + Ee) + (n+ 1)ℏωc − iℏ

(n+ 1)κ+ γ

4

± 1

2

√(
∆E − ℏωc − iℏ

γ − (n+ 1)κ

2

)2

+ Ω2
n,

(9)

where the real parts of E±(n) are energies of the states
|±, n⟩ and the imaginary parts yield their broadening.
In resonance, when Eg + ℏωc = Ee, the Rabi-splitting

is ΩR(n) =
√

Ω2
n − (ℏγ−(n+1)ℏκ)2

4 . Thus, to observe the

Rabi-Splitting at n = 0, we require Ωn ≫ κ or γ which
defines the strong coupling regime.

To get an intuitive understanding of the cavity-
modified photochemistry, consider the Hamiltonian in
the |e, 0⟩ (the molecule in the excited state with 0 pho-
tons in the cavity) and |g, 1⟩ (the molecule in the ground
state with 1 photon in the cavity) subspace. The po-
lariton Hamiltonian within this subspace is expressed as
follows

Ĥpl =

[
Eg(R) + ℏωc ℏgc

ℏgc Ee(R)

]
+

1

2
ℏωc1̂, (10)

where 1
2ℏωc is the zero point energy of the quantized

photon mode inside the cavity. Here we have made the
replacement Eg/e → Eg/e(R) such that the ground and
excited state potential energies depend on molecular nu-
clear configuration R, that is Eg(R) and Ee(R) are the
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molecular potential energy surfaces (PES).
The polariton potential energy surfaces can be ob-

tained by diagonalizing 2 × 2 matrix given in Eqn. 10
and are given as

E±(R) =
1

2
(Eg(R) + Ee(R)) + ℏωc

± 1

2

√
(Ee(R) − Eg(R) − ℏωc)2 + Ω2

R. (11)

These light-matter hybrid PESs E±(R), so-called po-
laritonic PESs, adapt their curvature from both the
ground and the excited state PESs and depend on the
light-matter coupling strength ℏgc and the cavity pho-
ton frequency ℏωc. Therefore, the excited state po-
tential energy landscape, and consequently the pho-
tochemistry of the cavity-molecule system, is modified
with ℏgc and ℏωc acting as tuning knobs to control the
molecular excited state dynamics. Note that within the
approximated JC model, the |g, 0⟩ state has the PES
Eg(R)+ ℏωc

2 which is the same as the molecular ground
state |g⟩ other than the irrelevant zero-point energy shift
of ℏωc

2 . This change of PES landscape is the central
idea of polariton photochemistry (in the single molecule
coupled to a single radiation mode limit) which will be
discussed in detail in Sec. 3-4. Details of the rigorous
light-matter Hamiltonian, as well as various approxi-
mate ones (such as the JC model), and their applicabil-
ity are discussed in Sec. 2.

1.2 Tavis-Cummings Model and Collec-
tive Light-Matter Coupling

Most of the recent molecular cavity QED experi-
ments,3,27,29–32 however, use the setup illustrated in
Fig. 1b, where many molecules are collectively cou-
pled to the quantized electromagnetic field inside a
Fabry–Pérot optical cavity (formed by reflecting mir-
rors). To describe this collective regime of light-matter
coupling, the Tavis-Cummings (TC) model Hamilto-
nian19 is used as an analog to the JC Hamiltonian with
many molecules. This model is under the same level of
approximation (mainly the rotating wave approxima-
tion) as the JC model but with many molecules, taking
the following form

ĤTC = ĤM + ℏωc(â
†â+

1

2
) +

N∑
J=1

ℏgc(σ̂†
J â+ σ̂J â

†)

= ĤM + ℏωc(â
†â+

1

2
) +

√
Nℏgc(σ̂†

N â+ σ̂N â
†), (12)

where J is the index of the two-level atoms/molecules
in the cavity (and there are a total of N of them effec-
tively coupled to the cavity), with corresponding ex-

citon creation operator, σ̂†
J = |eJ⟩⟨gJ |, and annihi-

lation operator, σ̂J = |gJ⟩⟨eJ |. Further, due to the
model’s symmetry, one can introduce the collective ex-
citation operator σ̂†

N = 1√
N

∑
J |eJ⟩⟨gJ | and collective

de-excitation operator σ̂N = 1√
N

∑
J |gJ⟩⟨eJ |. Simi-

lar to the JC model, the TC model also has analyti-
cal solutions to its eigenstates and eigenenergies in the
first excitation subspace. The total ground state is
|G, 0⟩ = |g1⟩ ⊗ ...|gJ⟩...⊗ |gN ⟩ ⊗ |0⟩, the photon dressed
ground state is |G, 1⟩, where all the emitters are in the
ground state with one photon in the cavity, and the
state where the all the molecules are in the ground
state except for the Jth molecule in the excited state
is |EJ , 0⟩ = |g1⟩ ⊗ ...|eJ⟩... ⊗ |gN ⟩ ⊗ |0⟩. In the single
excitation manifold, the collective “bright state” of the
matter is

|B, 0⟩ =
1√
N

N∑
J=1

|EJ , 0⟩ (13)

which will explicitly couple to the |G, 1⟩ state, resulting
in the polariton states |±⟩ (which have non-zero transi-
tion dipoles from the |G, 0⟩ states) as follows

|+⟩ = cos ΘN |B, 0⟩ + sin ΘN |G, 1⟩ (14a)

|−⟩ = − sin ΘN |B, 0⟩ + cos ΘN |G, 1⟩ , (14b)

where ΘN = tan−1[(2ℏgc
√
N)/(ℏωc − ∆E)]/2 is the

mixing angle under the collective coupling regime, and
∆E = Ee − Eg is the energy difference between the
bright state |B, 0⟩ (as well as the singly excited man-
ifold) and ground state |G, 0⟩. Through the collective
coupling to the cavity, the polariton states are delocal-
ized across all N molecules in the cavity and should be
viewed as mesoscopic quantum states that involve N
molecules and a single cavity mode. When N = 1 (sin-
gle molecule), the |±⟩ states in Eq. 14 reduces back to
the |±, 0⟩ states of the JC model in Eq. 4.

The eigenenergies of the upper and lower polariton
states also differ from the single-molecule picture be-
cause their Rabi splitting now scales with

√
N as

E± =
1

2
(Eg + Ee) + ℏωc ±

1

2

√
(∆E − ℏωc)2 + 4Ng2c ,

(15)
where the collective Rabi splitting is defined as

ΩR ≡ E+ − E− =
√

(∆E − ℏωc)2 + 4Ng2c , (16)

which scales as
√
N . Fig. 1d shows a schematic of an

energy level diagram for this system at the resonance
condition (when ∆E− ℏωc = 0), and the Rabi splitting
is written as

ΩR = 2
√
Ngc =

√
N

V
·
√

2ωc

ℏϵ0
ê · µeg. (17)

This is a typical example of the collective effect, demon-
strating how many molecules collectively coupled to the
cavity can enhance the effective coupling strength by√
N , or collectively enhance the Rabi splitting with

the concentration N/V of the molecules inside the cav-
ity.31,33,34

The rest of the N − 1 eigenstates (in the single exci-
tation manifold) of the TC model are referred to as the
“dark” states9,32,35 (labeled by α) which are expressed
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as follows
|Dα, 0⟩ =

∑
J

cαJ |EJ , 0⟩ (18)

where
∑

J c
α
J = 0 for all dark states α. These states

are superpositions of the N matter states {|EJ , 0⟩}, and
thus are also delocalized across N molecules (one should
note their difference compared to the individual local-
ized excited state |EJ , 0⟩). Energetically, they are the
same as the original single-molecule excitation, Ee, and
are depicted as the gray states in Fig. 1d. These dark
states do not mix with the photon-dressed state |G, 1⟩
and do not contain any photonic excitation component
under the TC model consideration. These dark states
are also optically dark from the ground state |G, 0⟩ due
to the net zero transition dipole ⟨Dα, 0|

∑
J µ̂

J |G, 0⟩ =
µeg

∑
J C

α
J = 0 if we assume ⟨e|µ̂J |g⟩ = µeg for all

J ∈ [1, N ] emitters. Optically, one will see no signif-
icant absorption in between two polariton absorption
peaks (when ignoring disorder). In the recent molecular
polariton experiments, the typical number of molecules
coupled to the cavity36,37 is N ∼ 106 − 1011 per cavity
mode.

1.3 Theoretical Challenges

In quantum optics, coupling strengths can be classified
as weak, strong, ultrastrong, and deep strong.38 The
classification between weak and strong is governed by
the relationship between the coupling strength, gc

√
N ,

and the loss rate (whether cavity or molecule energy
loss), γ. The coupling is considered weak for gc

√
N/γ <

1 and strong for gc
√
N/γ > 1. The classification be-

tween ultrastrong and deep strong, however, depends
on the ratio gc/ωc, with the ultrastrong regime being
0.1 < gc

√
N/ωc < 1, and the deep strong regime being

gc
√
N/ωc > 1.

While the Jaynes-Cummings and Tavis-Cummings
models provide valuable, intuitive insights into how light
couples with matter inside optical cavities, these mod-
els are subject to many approximations: the rotating
wave approximation, the dipole approximation, the two-
level approximation, and also the absence of permanent
dipole and dipole self-energy. As coupling strengths in-
crease, these approximations begin to break down,38,39

and more rigorous Hamiltonians should be used (such
as those discussed in Sec. 2). In the ultrastrong and
deep coupling regimes, the JC and TC models fail to
accurately capture the results of more rigorous meth-
ods.

The necessity of using more rigorous models is sub-
stantiated by the recent progress of experimentation
in recent years. For example, the Ebbesen group in
Ref. 40 achieved ultra-strong light-matter coupling in a
Fabry–Pérot cavity with an effective gc

√
N/ωc = 0.16.

Additionally, for single molecules in plasmonic cavities,
the Baumberg group in Ref. 20 demonstrates strong
coupling that was nearly in the ultrastrong regime.
These seminal experiments cannot be accurately de-
scribed with the simple JC and TC models. In this man-

ner, there has been a significant push in recent years to
advance the theoretical understanding and simulations
for these systems to explain current experiments and
predict future ones.

1.4 Outline of the Review

This review summarizes recent theoretical advances in
polariton chemistry, and it is organized as follows. Sec-
tion 2 discusses the fundamental theoretical framework
behind light-matter interactions. Starting from the
most rigorous Hamiltonian, it discusses how and when
to perform various approximations to reduce the compu-
tational complexity while keeping the relevant physics.
Section 3 discusses how to apply the fundamental frame-
work of the previous section to realistic systems with
ab-initio electronic structure methods. This section re-
views different methods of marrying electronic struc-
ture methods to these hybrid light-matter systems to
model complicated polariton systems. Section 4 ap-
plies the methods of Sections 2 and 3 to photochemistry,
showing how simple chemical reactions such as photo-
isomerization or charge transfer reactions can be altered
by strongly coupling electronic transitions to a cavity.
Section 5, similarly, summarizes recent progress in un-
derstanding vibrational strong coupling (VSC), where
the nuclear vibrational states are strongly coupled to the
cavity, leading to changes of the ground state chemical
kinetics. This section further shows how the fundamen-
tals of statistical mechanics like rate constant theory
can be used to understand these reactions. Section 6
goes on to present recent theoretical explanations of ex-
periments in the collective coupling regime, a regime
that is largely mysterious since direct modeling of ex-
perimentally relevant numbers of molecules is typically
impossible, and simple models like the TC model break
down for experimentally realizable coupling strengths.
This section also discusses various recent theoretical hy-
potheses to explain the experimentally observed sup-
pression or enhancement of the reaction rate constant
under the collective vibrational strong coupling regime.

2 Fundamental Theory of Light-Matter
Interactions

While the Jaynes-Cummings and Tavis-Cummings
models discussed in the Introduction provide an intu-
itive understanding of light-matter interactions, these
simplified models break down for many systems that
cannot be thought of as two-level systems or have per-
manent dipole.41 For most molecular systems, a more
rigorous framework is needed to provide even qualita-
tively accurate results. With this in mind, this section
discusses the various theoretical representations that go
beyond simple quantum optics models like the Jaynes-
Cummings model.

Going beyond the framework discussed in the Intro-
duction, this section outlines the fundamental theory of
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cavity QED. Section 2.1 starts off by reviewing the for-
mulation of molecular Hamiltonians. Section 2.2 sim-
ilarly reviews quantum electrodynamics (QED). Sec-
tion 2.3 discusses the most common cavity QED Hamil-
tonians as they are represented in the full Hilbert space.
Section 2.4 then goes on to show recent advances and
controversies on how to accurately represent these QED
Hamiltonians in a truncated Hilbert space. Section 2.6
discusses a further extension of the typical QED Hamil-
tonians to models which include many molecules and
many photonic modes in a single cavity.

We also recommend to readers the following resources
for further reading. Ref. 42 provides an excellent re-
view on different coupling regimes of light-matter in-
teractions, including the ultra-strong and deep-strong
couplings. Ref. 43 provides an extensive discussion on
gauge ambiguities in a broader perspective. Ref. 44
provides a thorough review on recent progress in molec-
ular cavity QED. Refs. 45–49 provide fundamental dis-
cussions on QED and cavity QED. Lastly, Refs. 48,50
provide an excellent introduction to quantum optics.

2.1 A Review of Molecular Hamiltoni-
ans

Here, we briefly review some basic knowledge of the
molecular Hamiltonian, which will be useful for our dis-
cussions of molecular cavity QED. We begin by defining
the matter Hamiltonian as follows

ĤM = T̂ + V̂ (x̂) =
∑
j

1

2mj
p̂2
j + V̂ (x̂j), (19)

where j is the index of the jth charged particle (in-
cluding all electrons and nuclei), with the corresponding
mass, mj , and canonical momentum, p̂j = −iℏ∇j . We
denote electronic coordinate with r̂, and nuclear coordi-
nate with R̂, and use x̂j ∈ {rj ,Rj} to represent either
the electron or nucleus, with x̂ being the coordinate op-
erator for all charged particles. Further, T̂ = T̂R + T̂r

is the kinetic energy operator for all charged particles,
where T̂R and T̂r represent the kinetic energy operator
for nuclei and for electrons, respectively. Further, V̂ (x̂)
is the potential operator that describes the Coulombic
interactions among the electrons and nuclei. The elec-
tronic Hamiltonian is often defined as

Ĥel = ĤM − T̂R = T̂r + V̂ (x̂), (20)

which includes the kinetic energy of electrons, electron-
electron interactions, electron-nuclear interactions, and
nuclear-nuclear interactions. The essential task of the
electronic structure community is focused on solving the
eigenstates of Ĥel at a particular nuclear configuration
R as follows

Ĥel|ψα(R)⟩ = Eα(R)|ψα(R)⟩, (21)

where Eα(R) is commonly referred to as the αth po-
tential energy surface (PES) or adiabatic energy, and

|ψα(R)⟩ is commonly referred to as the αth adiabatic
electronic state.

In the adiabatic electronic basis {|ψα(R)⟩}, the mat-
ter Hamiltonian can be expressed as51,52

ĤM =
1

2M

(
P̂−iℏ

∑
αβ

dαβ |ψα⟩⟨ψβ |
)2

+
∑
α

Eα(R)|ψα⟩⟨ψα|,

(22)

where P̂ is the nuclear momentum operator, M is the
tensor of nuclear masses, and we have used the short-
hand notation |ψα⟩ ≡ |ψα(R)⟩, and dαβ is the derivative
coupling expressed as

dα = ⟨ψα(R)|∇R|ψα(R)⟩. (23)

Note that the above equation is equivalent51,52 to the
commonly used form of the vibronic Hamiltonian

ĤM = − ℏ2

2M

∑
αβ

[
∇2

Rδαβ + 2dαβ · ∇R +Dαβ

]
|ψα⟩⟨ψβ |

+
∑
α

Eα(R)|ψα⟩⟨ψα|,

where Dαβ = ⟨ψα(R)|∇2
R|ψβ(R)⟩ is the second deriva-

tive coupling. A simple proof can be found in Ref. 41.
Later, we will see that the dipole operator plays an

important role in describing light-matter interactions,
so let us spend a bit of time to discuss the molecular
dipole operator. The total dipole operator of the entire
molecule is

µ̂ =
∑
j

zjx̂j , (24)

where zj is the charge for the jth charged particle. The
matrix elements of the total dipole operators can be
obtained using the adiabatic states as

µαβ(R) = ⟨ψα(R)|µ̂|ψβ(R)⟩. (25)

For α ̸= β, µαβ(R) is referred to as the transition dipole
between state |ψα⟩ and |ψβ⟩, while µαα(R) is commonly
referred to as the permanent dipole for state |ψα⟩.

It is often difficult to get accurate electronic states for
highly excited adiabatic states. It is thus ideal to con-
sider a Hilbert subspace of the electronic Hamiltonian.
Considering a finite subset of electronic states {|ψα⟩}
(see Eq. 21) where there is a total of N matter states,
one can define the following projection operator

P̂ =

N∑
α=1

|ψα(R)⟩⟨ψα(R)|, (26)

which defines the truncation of the full electronic
Hilbert space 1̂r = P̂ + Q̂ which has an infinite basis, to
a subspace P̂ that contains a total of N states, where
1̂r is the identity operator in the electronic Hilbert sub-
space (the subspace containing all of the electron DOF)
and Q̂ = 1̂r − P̂ is the subspace being projected out.

Using the projection operator, one can define the pro-
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jected matter Hamiltonian (or the truncated matter
Hamiltonian) as follows

ĤM = P̂ĤMP̂ = P̂T̂P̂ + P̂V̂ (x̂)P̂. (27)

Throughout this review, we use calligraphic symbols
(such as ĤM) to indicate operators in the truncated
Hilbert space, which we have already started in Eq. 1
of the Introduction.

One can also explicitly write the dipole operator in
the truncated Hilbert space as follows

P̂µ̂P̂ =

N∑
α=1

µαα(R) |ψα(R)⟩⟨ψα(R)| (28)

+
∑
α ̸=β

µαβ(R) |ψα(R)⟩⟨ψβ(R)|.

In the same truncated electronic subspace as defined
by P̂ (Eq. 65), we can diagonalize the dipole matrix in
Eq. 28 to obtain

P̂µ̂P̂ =

N∑
ν

µνν(R) |ϕν⟩⟨ϕν |, (29)

where |ϕν⟩ is the eigenstate of the projected dipole op-
erator P̂µ̂P̂ with

|ϕν⟩ =

N∑
α

cνα(R)|ψα(R)⟩, (30)

and cνα(R) = ⟨ψα(R)|ϕν⟩. An example of the dipoles
for LiF is provided in Fig. 6(b).

The projection operator in Eq. 26 can also be ex-
pressed as

P̂ =

N∑
ν=1

|ϕν⟩⟨ϕν |, (31)

which is simply a unitary transform of Eq. 26 (from the
|ψα(R)⟩-representation to the |ϕν⟩-representation).

In the literature, the eigenstates of P̂µ̂P̂, {|ϕν⟩},
are referred to as the Mulliken-Hush (MH) diabatic
states,53–57 which are commonly used as approximate
diabatic states that are defined based on their charac-
ters. They are approximate diabatic states in the sense
that

⟨ϕν |∇R|ϕϵ⟩ ≈ 0; (32)

hence, we drop the R-dependence in |ϕν⟩. Constructing
rigorous diabatic states (where the derivative coupling
is rigorously zero for all possible nuclear configurations)
in a finite set of electronic Hilbert spaces is generally im-
possible, except for diatomic molecules. Recent theoret-
ical progress on diabatization can be found in Ref.58–60

In the electronic subspace defined within the MH di-
abatic subspace using P̂ (Eq. 31), Ĥel (Eq. 20) has off-

diagonal (or “diabatic”) coupling terms

Vνϵ(R) = ⟨ϕν |Ĥel|ϕϵ⟩ =
∑
α

cν∗α (R)cϵα(R) ⟨ψα| Ĥel |ψα⟩

(33)
We can explicitly express the matter state projected

ĤM = T̂R +
∑
ν

Vνν(R) |ψν⟩⟨ψν |+
∑
ν ̸=ϵ

Vνϵ(R) |ψν⟩⟨ψϵ|.

(34)
This is also the molecular Hamiltonian for any diabatic
representation.

2.2 A Review of Quantum Electrody-
namics

We provide a quick review of quantum electrodynam-
ics (QED).39,44 We begin by writing the electric field

as Ê(r) = Ê∥(r) + Ê⊥(r), with its longitudinal part

Ê∥(r) that is curl free (irrotational), ∇ × Ê∥(r) = 0,

and the transverse part, Ê⊥(r), that is divergence-free

(solenoidal), ∇·Ê⊥(r) = 0. The magnetic field is purely

transverse B̂(r) = B̂⊥(r), because it is divergence-free

∇ · B̂(r) = 0. These fields have spatial dependence,
with spatial coordinate r (not to be confused with the
electronic coordinate operator, r̂).

In the context of cavity QED, most simulations are
performed in one of two gauges, either the Coulomb
gauge45 or the dipole gauge,5,13,61 where the term
“gauge” refers to the specific representation of the vec-
tor potential Â. Expressing Â = Â∥+Â⊥, with its lon-

gitudinal part Â∥ that is curl free ∇× Â∥ = 0, and the

transverse part Â⊥ that is divergence-free ∇ ·A⊥ = 0.
In principle, one can do gauge transformations that
change the longitudinal part Â∥, because the physically
observed quantities will not change, (e.g. the magnetic

field, since B̂ = ∇ × Â = ∇ × Â⊥). One often refers

to fixing a gauge by choosing the value of ∇ × Â such
that the gauge transformation is effectively adding an
additional ∇χ component to Â∥, which is purely lon-
gitudinal because when χ is a scalar function in space,
∇χ is curl-free (∇×∇χ = 0).

When deriving QED from first principles, one often
uses the minimal coupling Hamiltonian in the Coulomb
gauge62 (See Eq. 45). From there, the electric-dipole
Hamiltonian can be found via a gauge transformation.
The commonly used Pauli-Fierz (PF) QED Hamilto-
nian39,44,63 (See Eq. 56) in recent studies of polariton
chemistry can be obtained by applying another gauge
transformation on the electric-dipole Hamiltonian. We
will further discuss the consequence of matter state
truncation on gauge invariance, the connection with the
commonly used quantum optics model Hamiltonians,
and when they will break down in molecular QED.

When fixing a specific gauge, one defines the gauge-
dependent vector and scalar potentials for the electro-
magnetic field. By choosing the Coulomb Gauge (i.e.
by enforcing ∇ · A = 0) which makes the vector po-
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tential purely transverse, Â = Â⊥, the Hamiltonian of
point charge particles (including both electrons and nu-
clei) interacting with the electromagnetic field can be
written as follows45

Ĥ =

N∑
j

1

2mj

(
p̂j − qjÂ⊥(rj)

)2
+
ϵ0
2

∫
dr3Ê2

∥(r)

+
ϵ0
2

∫
dr3

[
Ê2

⊥(r) + c2B̂2
⊥(r)

]
, (35)

where the sum includes both the nuclear and electronic
DOFs, rj and pj are the position and momentum of the
charged particle j, with the charge qj and massmj . Fur-
ther, A⊥(r), E⊥(r) and B⊥(r) are the transverse vector
potential, electric field, and magnetic field, respectively.
The energy associated with E∥(r) (the second term in
Eqn. 35) is given by

ϵ0
2

∫
dr3Ê2

∥(r)

=
∑
j

q2j
2ϵ0(2π)3

∫
dk3

k2
+

1

8πϵ0

∑
i̸=j

qiqj
|x̂i − x̂j |

=
∑
j

ϵ∞j + V̂ (x̂) → V̂ (x̂). (36)

Here, the first term
∑

j ϵ
∞
j in the third line of Eqn. 36

is a time-independent infinite quantity that is referred
to as the self-energy (not to be confused with the dipole
self-energy), which can be regarded as a shift of the
zero-point energy48 and is dropped in the last line of
the above equation. In short, the Coulomb potential
Vcoul(x̂) ≡ V (x̂) emerges from the longitudinal electric
field.

The last term in Eqn. 35 is the energy associated with
the transverse fields Ê⊥(r) and B̂⊥(r). The general

expressions for Â⊥(r), Ê⊥(r), and B̂⊥(r) are45

Â⊥(r) =
∑
k

êk
ωk

√
ℏωk

2ε0V

(
âke

ik·r + â†ke
−ik·r

)
, (37a)

Ê⊥(r) = i
∑
k

êk

√
ℏωk

2ε0V

(
âke

ik·r − â†ke
−ik·r

)
, (37b)

B̂⊥(r) = i
∑
k

k×êk
ωk

√
ℏωk

2ε0V

(
âke

ik·r − â†ke
−ik·r

)
,

(37c)

where â†k and âk are the raising and lowering operator
of the mode that has a wavevector of k ≡ (kx, ky, kz),
and they satisfy the canonical commutation relation45

[â†k, âk′ ] = δk,k′ · 1̂k. (38)

â†k and âk are the creation and annihilation operators
of the photon, respectively, δk,k′ is the Kronecker delta,

and the frequency of mode k is ωj = c|k|. Here k = |k|k̂
aligns in the direction of the unit vector k̂ and êk ⊥ k̂
is the polarization unit vector for Ê⊥(r) and Â⊥(r).

The polarization of the photonic field can be written
as a linear combination of the transverse electric (TE)
polarization, êk,TE, and the transverse magnetic (TM)
polarization, êk,TM, in relation to a given interface and
propagation direction. The TE mode’s polarization,
êk,TE, is defined as being perpendicular to the prop-
agation direction and parallel to the interface. The TM
mode’s polarization, êk,TM, is defined as being perpen-
dicular to both the propagation direction and the TE
polarization. For a given polarization, êk, the trans-
verse electric field is along êk and the magnetic field
is along the k̂×êk direction. For example, for the TM
mode, the transverse electric field polarization is along
êk,TE and the transverse magnetic field polarization is
along −êk,TM.

When considering a planar Fabry-Pérot (FP) micro-

cavity, Â⊥(r), Ê⊥(r) and B̂⊥(r) satisfy the boundary
conditions and thus the wavevector k becomes quan-
tized.45,48 For cavity mirrors imposing a boundary con-
dition along z direction (see Fig. 4), the z component
of the wavevector kz = n π

Lz
with n = 1, 2, 3... as a

positive integer. Note that kx and ky still remain quasi-
continuous variables. These are discussed in details in
Sec. 2.6.

Using the above expressions, the energy of the trans-
verse fields, i.e., the last term in Eqn. 35 is quantized
as follows

ε0
2

∫
V
dr3[E⊥

2(r) + c2B⊥
2(r)] =

∑
k

(
â†kâk +

1

2

)
ℏωk,

(39)
where the spatial integral dr3 is done within the effec-
tive quantized volume V of the cavity. Thus, Eq. 35 is
quantized as

Ĥp·A =

N∑
j

1

2mj

(
p̂j − zjÂ⊥(x̂j)

)2

+ V̂ (x̂)

+
∑
k

(
â†kâk +

1

2

)
ℏωk. (40)

This is commonly referred to as the “p · A” or the min-
imal coupling QED Hamiltonian, in the sense that the
light and matter coupling is only carried through the
matter momentum and the vector potential of the field.
The minimal coupling structure in Eq. 45 comes natu-
rally due to the local U(1) symmetry of the EM field,
which is an Abelian gauge field.

Assuming that the size of the molecular system is
much smaller than the length of the cavity in the quan-
tized direction, which is commonly referred to as the
long wavelength approximation, the transverse fields can
be treated as spatially uniform, i.e., eik·r ≈ 1, such that

Â⊥(r) ≈ Â⊥ =
∑
k

êk
ωk

√
ℏωk

2ε0V
(âk + â†k). (41)
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2.3 Cavity QED Hamiltonians

In cavity QED, one often consider only a single mode of
the radiation field along the ê direction. This is com-
monly referred to as the single mode approximation in
cavity QED, with the frequency ωc = πc/L (c is the
speed of the light, and ωc represents the single mode fre-
quency of the cavity), and the corresponding photonic
creation and annihilation operators â† and â (where we
have dropped the label of k for a single mode.)

The single mode cavity photon field Hamiltonian,
which is Eq. 39 under the single mode assumption, is
then expressed as

Ĥph = ℏωc

(
â†â+

1

2

)
=

1

2

(
p̂2c + ω2

c q̂
2
c

)
, (42)

where

q̂c =
√
ℏ/2ωc(â

† + â); p̂c = i
√
ℏωc/2(â† − â) (43)

are the photonic coordinate and momentum operators,
respectively.

Under the single mode approximation, the vector po-
tential (under the long wavelength approximation) in
Eq. 41 can be expressed as

Â = A0

(
â+ â†

)
= A0

√
2ωc/ℏ q̂c, (44)

where A0 =
√

ℏ
2ωcε0V ê is the vector field for a cavity.

Note that we have also dropped the “⊥” symbol for the
vector potential because it is purely transverse.

2.3.1 The Minimal Coupling Hamiltonian

Under the long wavelength and single mode approxima-
tion, the “p · A” minimal coupling QED Hamiltonian
(in the Coulomb gauge) in Eq. 40 is expressed as

Ĥp·A =
∑
j

1

2mj
(p̂j − zjÂ)2 + V̂ (x̂) + Ĥph, (45)

where p̂j = −iℏ∇j is the canonical momentum opera-
tor. Upon a gauge transformation

Ûχ = exp
[ i
ℏ
∑
j

zjχ(x̂j)
]
, (46)

where χ is a scalar function of position, and the gauge
transformed p · A Hamiltonian is Ĥχ = ÛχĤCÛ

†
χ, or

more explicitly, expressed as follows

Ĥχ =
∑
j

1

2mj
(p̂j − zjÂχ(x̂j))

2 + V̂ (x̂) + Ĥχ
ph, (47)

where Âχ(xj) = Â+∇jχ(x̂j) is the gauge transformed
vector potential that provides the same physical field,
because ∇j ×∇jχ(x̂j) = 0.

We further introduce the Power-Zienau-Woolley

(PZW) gauge transformation operator45,64 as

Û = exp
[
− i

ℏ
µ̂ · Â

]
, (48)

or equivalently, with the following expressions

Û = exp
[
− i

ℏ
√

2ωc/ℏµ̂A0q̂c
]

= exp
[
− i

ℏ
(
∑
j

zjÂx̂j)
]
.

Recall that a momentum boost operator Ûp = e−
i
ℏp0q̂

displaces p̂ by the amount of p0, such that ÛpÔ(p̂)Û†
p =

Ô(p̂ + p0). Hence, Û is a boost operator for both the
photonic momentum p̂c by the amount of

√
2ωc/ℏµ̂A0,

as well as for the matter momentum p̂j by the amount

of zjÂ. The PZW gauge operator (Eq. 48) is a special

case of Ûχ, such that χ = −x̂j · Â, where χ now also

explicitly dependents on Â (as appose to a pure function
of matter coordinates).

Using Û† to boost the matter momentum, one can
re-express Ĥp·A in Eq. 45 as

Ĥp·A = Û†ĤMÛ + Ĥph, (49)

hence Ĥp·A can be obtained42 by a momentum boost

with the amount of −zjÂ for p̂j , then adding Ĥph. This
result was first introduced in Ref. 64. This expression
is general even beyond the long-wavelength approxima-
tion.

2.3.2 The Dipole Gauge Hamiltonian

The QED Hamiltonian in the electric-dipole “d · E”
form64,65 (or so-called dipole gauge) can be obtained by
performing the PZW transformation on Ĥp·A as follows

Ĥd·E = ÛĤp·AÛ
† = Û Û†ĤMÛ Û

† + ÛĤphÛ
† (50)

= ĤM + ℏωc(â
†â+

1

2
) + iωcµ̂ ·A0(â† − â) +

ωc

ℏ
(µ̂ ·A0)2,

where we have used Eqn. 49 to express Ĥp·A, and the
last three terms of the above equation are the results of
ÛĤphÛ

†.
Using q̂c and p̂c (as defined in Eq. 43), one can equiv-

alently express Eq. 50 as

Ĥd·E = ĤM +
1

2
ω2
c q̂

2
c +

1

2
(p̂c +

√
2ωc

ℏ
µ̂A0)2. (51)

This can also be understood as the PZW operator
boosting the photonic momentum p̂c by

√
2ωc/ℏµ̂A0.

The “d · E” Hamiltonian can also be viewed as ef-
fectively using the Poincaré gauge,45 where the vec-
tor potential under the Coulomb gauge upon PZW
transformation gives the new vector potential A′

∥(r) =

−∇
∫ 1

0
dur · A⊥(ur) and A′

⊥(r) = A⊥(r). Note that
in this new gauge, the vector potential is no longer
purely transverse.45 This choice of the vector poten-
tial45 makes r · A′

(r) = 0. Thus, the Poincaré gauge
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enforces the vector potential to be perpendicular to the
r vector everywhere (where the radial component of
the vector potential is forced to be zero). The “d · E”
Hamiltonian is often referred to as the dipole gauge42

(where beyond the dipole approximation should be re-
ferred to as the multi-polar gauge45) or the length-
gauge44 due to µ̂ linearly depending on position.

The last term in Eq. 50 is commonly referred to as
the dipole self-energy (DSE)45

EDSE =
ωc

ℏ
(µ̂A0)2, (52)

which can be intuitively understood as the matter dipole
polarizing the cavity field, and then the polarized cav-
ity field acting back on the matter dipole, causing addi-
tional energy. Note that the DSE is different than the
quadratic terms z2j Â

2/2mj in Ĥp·A (Eq. 45), which is

commonly referred to as the Â2 term or diamagnetic
term. Mathematically, the PZW gauge transformation
operator shifts away (along the matter momentum di-

rection) the Â2 terms in the p · A Hamiltonian, and
causes a new shift (along the photonic momentum di-
rection) that results in the DSE term in Ĥd·E. Thus, the
DSE is an essential component to make sure that Ĥd·E
(Eq. 50) and Ĥp·A (Eq. 45) are gauge invariant. Ignor-
ing it under the weak coupling limit (gc/ωc ≪ 1) will
not cause a significant numerical error but will break
the gauge invariance.66

In the strong and ultra-strong coupling regimes, ig-
noring the DSE can cause an unstable ground state,
especially under the long-wavelength approximation.39

As discussed at length in Ref. 39, the loss of the DSE
term causes the ground state to be unbounded from be-
low. Additionally, without the DSE term, the Maxwell
equations in matter are no longer satisfied.39 In this
manner, it is essential to include the DSE term in the
strong and ultra-strong coupling regimes to accurately
capture the physics of the system.

Under the classical limit, the d · E Hamiltonian can be
obtained by applying the classical version of Û (Eq. 48),
which is the Göppert-Mayer gauge transformation, on
the classical p · A Hamiltonian in Eq 35. The details can
be found in Ref. 47 (page 73) or Ref. 48 (page 53). In-
terestingly, the classical version of the d · E Hamiltonian
does not contain the dipole self-energy term. This is be-
cause the DSE arises as a consequence of the quantum
commutation relation among field operators.47 In the
semiclassical picture, the electric and magnetic fields
are time-dependent potentials that commute with the
semiclassical PZW operator

Ûsc(t) = exp

[
− i

ℏ
µ̂ ·A(t)

]
. (53)

This Ûsc commutes with the electromagnetic fields,
causing no boost of the photonic DOFs. By using the
time-dependent Schrödinger equation, the linear d · E
term forms due to the time dependence of Ûsc(t); how-
ever, since [Ûsc(t),A(t)] = 0, there is no DSE term in

the semi-classical picture for the light-matter interac-
tions.

2.3.3 The Pauli-Fierz QED Hamiltonian

The widely used Pauli-Fierz (PF) QED Hamiltonian (in
the dipole gauge)39,44,63 in recent studies of polariton
chemistry can be obtained by applying another unitary
operator Û0 on Ĥd·E. This unitary transformation is
expressed as

Û0 = exp
[
−iπ

2
â†â

]
. (54)

Note that Û0â
†âÛ†

0 = â†â, Û0âÛ
†
0 = iâ, and Û0â

†Û†
0 =

−iâ†. The PF Hamiltonian is related to Ĥd·E as follows

ĤPF = Û0Ĥd·EÛ
†
0 (55)

= ĤM + ℏωc(â
†â+

1

2
) + ωcµ̂ ·A0(â+ â†) +

ωc

ℏ
(µ̂ ·A0)2.

The PF Hamiltonian in Eq. 55 has the advantage of
being a purely real Hamiltonian (under the long wave-
length approximation).

Using the q̂c and p̂c operators (defined in Eq. 43), the
PF Hamiltonian is expressed as

ĤPF = ĤM +
1

2
p̂2c +

1

2
ω2
c

(
q̂c +

√
2

ℏωc
µ̂ ·A0

)2
. (56)

By comparing the above equation with Eq. 51, one can
clearly see that the role of Û0 is to swap p̂c with q̂c. In

Eqn. 56, qc is displaced by −
√

2
ℏωc

µ̂ ·A0. Note that an-

other commonly used form of ĤPF is with the negative
sign of the photonic coordinate displacement

Ĥ ′
PF = ĤM +

1

2
p̂2c +

1

2
ω2
c

(
q̂c −

√
2

ℏωc
µ̂ ·A0

)2
. (57)

which is the result of applying Û ′
0 = exp

[
−iπâ†â

]
uni-

tary transformation on ĤPF, with Ĥ ′
PF = Û ′

0ĤPFÛ
′†
0 .

The role of Û ′
0 is causing a π phase shift for the pho-

tonic DOF and flip the sign of the q̂c displacement from
a positive one in ĤPF to a negative one in ĤPF′ .

From the form in Eq. 56, the photonic DOF can be
viewed44,63 and computationally treated67,68 as an ad-
ditional “nuclear coordinate”.67,69,70 This will be dis-
cussed further in Sec. 4.1.

2.3.4 Consistency upon Gauge Transformation

We emphasize that both the operators as well as the
wavefunctions should be gauge transformed through Û ,
in order to have a gauge invariant expectation value.71

This means that

Ô → Û ÔÛ†, |Ψ⟩ → Û |Ψ⟩, (58)

such that the expectation value of any observable is in-
variant under any gauge

⟨Ô⟩ = ⟨Ψ|Ô|Ψ⟩ = (⟨Ψ|Û†)(Û ÔÛ†)(Û |Ψ⟩). (59)
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Even though this is a basic fact in quantum mechanics,
historically, it has been overlooked in the quantum op-
tics community,71 and has been extensively discussed in
standard text books (e.g, see page 146 of Ref. 50).

The argument in Eq. 59 should also apply to the pho-
ton number operator, which means that it should also
be gauge transformed in order to provide a physical re-
sult. Under the Coulomb gauge, it is defined as

N̂p·A = â†â =
1

2ℏωc
p̂2c +

ωc

2ℏ
q̂2c −

1

2
(60)

Under the dipole gauge, it should be

N̂d·E = Û â†âÛ† = Û â†Û†Û âÛ† ≡ d̂†d̂, (61)

=
1

2ℏωc
(p̂c +

√
2ωc

ℏ
µ̂A0)2 +

ωc

2ℏ
q̂2c −

1

2

where d̂† = Û â†Û† =
√

ωc

2ℏ Û(q̂c − i
ω p̂c)Û

† =
√

ωc

2ℏ [q̂c −
i
ω (p̂c +

√
2ωc/ℏµ̂A0)]. For the PF Hamiltonian, the

photon number operator should be

N̂PF = ÛϕÛ â
†âÛ†Û†

ϕ = (ÛϕÛ â
†Û†Û†

ϕ)(ÛϕÛ âÛ
†Û†

ϕ) ≡ ĉ†ĉ

=
1

2ℏωc
p̂2c +

ωc

2ℏ
(q̂c +

√
2

ℏωc
µ̂ ·A0)2 − 1

2
, (62)

where the corresponding gauge transformed raising op-
erator becomes

ĉ† = ÛϕÛ â
†Û†Û†

ϕ =

√
ωc

2ℏ
[
(q̂c +

√
2ωc

ℏ
µ̂A0)) − i

ωc
p̂c
]
,

(63)
and the physical number operator is

N̂PF = ÛϕÛ â
†âÛ†Û†

ϕ = ĉ†ĉ ̸= â†â. (64)

This has been pointed out extensively in recently works
in Ref. 66 and Ref. 41. Using the incorrect expression
â†â under the dipole gauge will overestimate the actual
photon number,41 causing inaccurate and misleading re-
sults.

2.4 Hamiltonians in Truncated Hilbert
Spaces

Investigating cavity QED dynamics often requires a
truncation of electronic states applied to the QED
Hamiltonians.42,72 This is because these matter elec-
tronic states are often difficult to obtain, and in a lower
energy regime, one can project the QED Hamiltonian
to a few physically relevant electronic states without
losing significant accuracy. Consider a finite subset of
electronic states {|α⟩} where there is a total of N matter
states, Eq. 26 can be rewritten to define the projection
operator

P̂ =

N∑
α

|α⟩⟨α|. (65)

To make the discussion more general, the state |α⟩ is
not necessarily the adiabatic state used in Eq. 26. As
discussed in Sec. 2.1, P̂ defines the truncation of the full
electronic Hilbert space 1̂r = P̂ + Q̂ which has infinite
dimension, to a subspace P̂ that contains a total of N
states. This truncation reduces the size of the Hilbert
space of the entire problem from the original space, 1̂r⊗
1̂R⊗ 1̂ph, to P̂ ⊗ 1̂R⊗ 1̂ph, where 1̂R and 1̂ph represent
the identity operators of the nuclear and the photonic
DOF, respectively.

2.4.1 Gauge Ambiguities

Truncating the momentum operator and dipole opera-
tor as P̂p̂jP̂ and P̂µ̂P̂, the p · A Hamiltonian under the
truncated subspace are commonly defined as

Ĥ′
p·A = P̂Û†ĤMÛ P̂ + Ĥph (66)

= ĤM + Ĥph +
∑
j

(
− zj
mj

P̂p̂jP̂Â +
z2j Â

2

2mj

)
,

whereas the d · E Hamiltonian under the truncated sub-
space is commonly defined as42,43

Ĥd·E = ĤM+Ĥph+iωcP̂µ̂P̂A0(â†−â)+
ωc

ℏ
(P̂µ̂P̂A0)2.

(67)
It is well known that the above two Hamiltonians do not
generate identical polariton eigenspectra42,43,72,75–79

under the ultra-strong coupling regime,38 explicitly
breaking down the gauge invariance. This leads to the
gauge ambiguity71,72,80 as to which Hamiltonian, Ĥ′

p·A
or Ĥd·E, is correct for computing physical quantities
when applying P̂. This is a well-known result in quan-
tum optics68,72 that Ĥ′

p·A usually requires a larger sub-
set of the matter states to converge or generate consis-
tent results with Ĥd·E, and apparently, under the com-
plete basis limit, they should be gauge invariant.

The fundamentally different behavior of Ĥ′
p·A and

Ĥd·E upon matter state truncation is attributed to the
fundamental asymmetry of the p̂ and µ̂ =

∑
j zjx̂j op-

erators.72 This can be more clearly seen when consid-
ering just a single electron confined in a 1D potential
V̂ (x̂) (such that ĤM− Ĥel = 0, since there is no nuclear
DOF), where ĤM|α⟩ = Eα|α⟩. Under the energy rep-
resentation {|α⟩}, the matrix elements of the position
operator xαβ = ⟨α|x̂|β⟩ satisfy the following well-known
Thomas-Reich-Kuhn (TRK) sum rule

∑
α

(Eα − Eβ)|xαβ |2 =
ℏ2

2me
, (68)

where me is the mass of the electron. This means when
(Eα − Eβ) is larger (for well-separated energy levels),
|xαβ | will be smaller in order to satisfy the TRK sum
rule. This can be clearly seen in the middle panels of
Fig. 2a-b, where the largest matrix elements for xαβ
only show up for nearest neighbor energy levels. Thus,
in the energy representation, x̂ is “local” in the sense
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Figure 2: Gauge Ambiguities and the Recently Proposed Resolutions. (a) Demonstration of gauge ambiguities when
an electron in a 1-D square potential is strongly coupled to a cavity whose frequency is resonant to the electronic transition
from the ground state to the first excited state. Electronic matrix element magnitudes shown for the coordinate x̂ and its
conjugate momentum, p̂. Note that the coordinate matrix is significantly more diagonal than the momentum matrix. The
bottom panel shows the eigenspectra of the Coulomb (HC

Rabi) and dipole (HD
Rabi) gauges truncated to two levels compared

to the full basis limit. The stark disagreement between to two gauges demonstrates the gauge ambiguities. For this model,
the two level approximation is not a terribly good approximation. (b) This repeats the analysis for panel (a) for a double
well potential. For this model, the two-level approximation is valid. This shows how for a valid level of truncation the dipole
gauge results match very well with the full space results. (c) Demonstration of non-local potentials, V (x, x′), that form upon
a finite n-level truncation of the electronic Hilbert space. In the infinite basis limit, V (x, x′) −→ V (x) and is completely local.
As n decreases, the potential becomes increasingly non-local. These numerical results are for an electron in a double well
potential (similar to panel (b)). (d) Proposed resolution to the gauge ambiguities discussed in panels (a)-(c) for molecular
systems. For a simplified 1-D proton and electron transfer model, the eigenspectra of three two-level truncated polaritonic
Hamiltonians under the Born-Oppenheimer approximation are compared: the truncated dipole gauge Hamiltonian (HD

pl),

the naively truncated Coulomb gauge Hamiltonian (HC′
pl ), and the newly proposed properly truncated Coulomb Hamiltonian

(HC
pl). The properly truncated Coulomb Hamiltonian perfectly matches the results calculated in the dipole gauge. Panels (a)

and (b) are adapted with permission from Ref. 72. Copyright 2018 American Physical Society. Panel (c) is adapted with
permission from Ref. 73. Copyright 2020 American Physical Society. Panel (d) is adapted with permission from Ref. 74.
Copyright 2020 American Physical Society.
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it only strongly couples the |Eα⟩ and |Eβ⟩ energy lev-
els when their energies are close. The transition dipole
operator for a single electron is µ̂ = −x̂ (where the fun-
damental charge of the electron is z = −1), and thus
µαβ = −xαβ . This explains why Ĥd·E often gives accu-
rate numerical results of polariton eigenvalues, due to
the fact that µ̂ behaves locally in the energy space and
thus truncation is often a valid approximation. The ma-
trix element of the momentum operator pαβ = ⟨α|p̂|β⟩,
on the other hand, is related to xαβ as follows

pαβ = i
me

ℏ
(Eα − Eβ) · xαβ . (69)

Thus, the momentum operator behaves in a “non-local”
fashion in the energy representation, because (Eα−Eβ)
can get very large even when the corresponding xαβ is
small. This behavior can be seen from the the middle
panels of Fig. 2a-b, where the large amplitudes of pαβ
exist among states |α⟩ and |β⟩, even when (Eα − Eβ)
is large. Rabl and co-workers72 argue that this why
Ĥ′

p·A behaves less accurately upon matter state trunca-
tion due to the non-local behavior of the coupling term
− zj

mj
P̂p̂jP̂Â in Eq. 66. Thus, the large energy gaps

in molecular systems do not guarantee small matrix el-
ements of the p̂ operator,72 hence a finite-level trun-
cation in the “p · A” Hamiltonian often leads to large
numerical errors. Hence, it is often more convenient to
use the dipole gauge when applying the finite-level ap-
proximation for the matter DOFs.72 Note that such an
asymmetry in the x̂ and p̂ operators disappears for the
quantized electromagnetic mode or for a harmonically
bound dipole, where momentum and position operators
are interchangeable.72 However, when the molecular po-
tential is highly anharmonic, the gauge invariance is ex-
plicitly broken under the finite-state approximation,42

for Ĥ′
p·A (Eq. 66) and Ĥd·E (Eq. 67), due to the lack of

a complete basis.
Figs. 2a-b demonstrate the breakdown of gauge in-

variance72 between Ĥ′
p·A (Eq. 66) and Ĥd·E (Eq. 67)

for model systems with a square and double well po-
tential, respectively. In both models, the energy eigen-
spectra using each gauge (Eqs. 66 and 67) for an elec-
tion in a given potential is plotted as a function of
coupling strength when truncated to only two matter
levels, and the matrix elements of x̂ and p̂ are visual-
ized. In Fig. 2a, these results are shown for a square
potential. In this case, the dipole gauge results outper-
form Coulomb gauge results but still fails to capture
much of the physics of the full system. This is a conse-
quence of the locality of x̂ and p̂ in the energy picture,
shown by the matrix element visualizations in Fig. 2a.
The position matrix elements are much more localized
than the momentum matrix elements. However, a two
level truncation is still not a good approximation, since
| ⟨ψ1| x̂ |ψ2⟩ | matrix elements are significant, meaning
that at least three states are needed to accurately de-
scribe the first two states. These results can be con-
trasted with those of Fig. 2b, where the potential is

a double well potential. In this case, the matrix ele-
ments of x̂ are more localized for the first two levels,
such that it can be well approximated as a two-level
system. For the momentum matrix elements, however,
the first two states are strongly coupled to many high
energy states. This disparity is apparent in the energy
eigenspectra from the dipole and Coulomb gauges. The
dipole gauge results follow the fully converged results,
while the Coulomb gauge results diverge.

In the truncated electronic basis, the PF Hamiltonian
ĤPF = Û0Ĥd·EÛ

†
0 = ĤM + Û0ÛĤphÛ†Û†

0 is expressed
as

ĤPF = ĤM + Ĥph + ωcP̂µ̂P̂ ·A0(â+ â†) +
ωc

ℏ
(P̂µ̂P̂ ·A0)2

= ĤM +
1

2
p̂2c +

1

2
ω2
c (q̂c +

√
2

ℏωc
P̂µ̂P̂ ·A0)2 (70)

Note that Û0 (Eq. 54) is only a function of the photonic
DOF, thus it does not bring any matter operator that
was originally confined in P̂ to Q̂. Hence, ĤPF provides
consistent results from Ĥd·E, ensuring no ambiguities
from truncation between Ĥd·E and ĤPF.

2.4.2 Proposed Causes and Resolutions of
Gauge Ambiguities

In recent literature,42,73–75,81,82 the source of these
gauge ambiguities and corresponding resolutions (See
Fig. 2a-b) has been thoroughly discussed from both an
intuitive physical perspective42,73 and a rigorous math-
ematical perspective.73–75,81,82

In Refs. 42,73, Stefano et. al. and Garziano et. al.
describe the source of gauge ambiguities in terms of the
locality of the matter potential energy operator in the
truncated Hilbert space, P̂V̂ (x̂)P̂ = V̂(x̂, x̂′). In other
words, upon matter truncation to a finite basis, the po-
tential energy operator is defined based on two positions
in space, hence it is no longer local in space (only de-
pending on x). Equivalently, by Fourier transforming
in x̂′, one can say that this operator is dependent on
both the position and momentum operators. Fig. 2c
shows how for an n-level matter truncation, V̂(x̂, x̂′)
gets increasingly non-local as n shrinks. Refs. 42,73
argue that this non-locality leads to gauge ambiguities
since the expression in Eq. 66 contains the non-local po-
tential, V̂(x̂, p̂), to which the gauge transformation has
not been applied (due to the fact that V̂ (x̂) commutes
with Û). This can be seen by rewriting Eq. 66 as,

Ĥ′
p·A = P̂

[
Û†

∑
j

p̂j

2mj
Û + V̂ (x̂)

]
P̂ + Ĥph, (71)

where x̂ = {x̂j}. To fix this problem, it was proposed

to first truncate ĤM and then transform it by the pro-
jected PZW operator P̂Û P̂, which will gauge transform
the non-local potential V̂(x̂, p̂). However, Ref. 75 points
out that this does not formally solve the gauge ambigu-
ities. Instead, it works specifically when the matter is
truncated to a two level system, making the proposed
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solution just a rotation on a Bloch sphere.
In Refs. 74,81, Taylor et. al. go further to propose a

general resolution to gauge ambiguities for any matter
system under the dipole approximation. The key in-
sight discussed in these works is the concept of proper
confinement of all operators in the truncated subspace.
For a given projection operator, P̂, there is a comple-
mentary operator, Q̂, such that P̂ +Q̂ = 1̂M. Taylor et.
al. describe a new gauge theory that is “properly con-
tained” in the subspace defined by P̂. In other words,
all the information of the truncated system lives en-
tirely in the P̂ subspace without any information in
the Q̂ subspace. For example, consider the case of
P̂x̂2P̂ = P̂x̂(P̂ + Q̂)x̂P̂ ̸= (P̂x̂P̂)2. In this manner,
P̂x̂2P̂ is not properly confined in P̂, since it contains x̂
information from the Q̂ subspace, P̂x̂Q̂x̂P̂.

This concept of proper confinement is then used to
resolve gauge ambiguities by ensuring that any two ar-
bitrary gauges can be connected through unitary trans-
formations within the P̂ subspace. For either the dipole
or Coulomb gauge in the full Hilbert space, the trun-
cated analog can be formulated in four steps. First,
represent the full space Hamiltonian in terms of ĤM,
Ĥph and Û (as done in Eqs. 49 and 50). Second, trun-

cate ĤM and Ĥph in their eigenbases. Third, redefine

the PZW operator, Û , to be properly confined in the
P̂ subspace in terms of x̂ and p̂. This can be done by
applying the projection operator inside the exponential
of Û as follows

Û = exp
[
− i

ℏ
P̂µ̂P̂ · Â

]
. (72)

As discussed in Ref. 81, this idea can be generalized
to any kind of truncation of a Hilbert space, even for
those going beyond just material truncation. For exam-
ple, the gauge-transformation operator can also be con-
structed for cavity photonic mode truncation, where the
projection operator P̂ will also include the cavity mode
truncation (by projecting out the corresponding Fock
states of those truncated modes, except for the group
Fock state). For that case, the most general expression
of Û becomes81

Û = exp
[
− i

ℏ
P̂
(
µ̂ · Â

)
P̂
]

(73)

where P̂ enforces both matter and photonic Hilbert
space projection. An example of the mode truncation
related P̂ can be found in Eq. 95, which also contains
the photonic operators and thus needs to project µ̂ · Â
all together.81 When P̂ only contains projections on the
electronic DOF of the matter, Eq. 72 and Eq. 73 are
equivalent.

Finally, one can reconstruct the full Hamiltonians us-
ing the forms from Eqs. 49 and 50 and the truncated
operators, P̂ĤMP̂, P̂ĤphP̂, and Û (from Eq. 73). The
properly truncated Coulomb gauge Hamiltonian takes

the form

Ĥp·A = Û†P̂ĤMP̂Û + P̂ĤphP̂. (74)

By ensuring proper confinement of all operators, this
method strictly ignores any information from the Q̂ sub-
space. The Û operator is also strictly unitary in its
own Hilbert subspace, so the gauge invariance between
the dipole and Coulomb gauges is ensured. This trans-
formed Hamiltonian can then be explicitly written for
molecular systems as

Ĥp·A = Û†P̂T̂P̂Û + Û†P̂V̂ (x̂)P̂Û + Ĥph (75)

=
∑
j

1

2mj
P̂
(
p̂j −∇jµ̃Â + P̃j)

2P̂ + Û†V̂(x̂, p̂)Û + Ĥph,

where P̃j ≡ 1
2

(
i
ℏ
)2

[µ̃Â, [µ̃Â, p̂j ]] + ... is the residual

momentum and µ̃ ≡ P̂µ̂P̂ is the truncated dipole
operator.74 Note that Ĥ′

p·A (Eq. 66) as well as Ĥp·A

(Eq. 45) only contain the vector potential Â up to the
second order. This is no longer the case for Ĥp·A in

Eq. 75. In fact, both the P̃j term and the Û†V̂(x̂, p̂)Û
term in principle contain infinite orders of Â. Hence,
the consequence of level truncation on Ĥp·A is not
just simply modifying the matrix elements of the mo-
mentum operator (as incorrectly indicated by Ĥ′

p·A in
Eq. 66), but rather profoundly changing the structure
of light-matter interactions42 through both the new po-
tential Û†V̂(x̂, p̂)Û as well as the new momentum shift

−∇jµ̃Â + P̃j , due to the mixing of the light and the

matter DOFs through Û† and Û in the truncated sub-
space. It is clear that Ĥp·A (Eq. 76) will return to Ĥp·A
(Eq. 45) under the complete electronic basis limit, such
that µ̃ ≡ P̂µ̂P̂ → µ̂, thus ∇jµ̃ → ∇jµ̂ = zj , hence

P̃j → 0, as well as Û → Û , hence Û†P̂V̂ (x̂)P̂Û →
Û†V̂ (x̂)Û = V̂ (x̂). In Ref. 82, Gustin et. al. further
generalizes the resolution of gauge ambiguities beyond
the dipole approximation by defining Û in terms of the
full matter polarization instead of the dipole operator.
They then properly confine Û by truncating the polar-
ization operator in terms of x̂. Unfortunately, Ĥp·A in
Eq. 75 no longer remains in the minimum coupling form
in Eq. 45 which only involves charges but not higher
multipole moments. Of course, when approaching the
complete electronic states limit, the minimum coupling
form is restored. Nevertheless, Ĥp·A is invariant from

Ĥd·E through the Û transformation, thus resolving the
ambiguity between them.

2.4.3 Molecular QED Hamiltonian in the p · A
form

Going back to the molecular cavity QED Hamiltonian,
by splitting the matter Hamiltonian as ĤM = T̂R + Ĥel
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(see Eq. 20), one can express Eq. 75 as follows

Ĥp·A = Û†P̂T̂RP̂Û + Û†P̂Ĥel(p̂r, r̂, R̂)P̂Û + Ĥph

(76)

=
∑
j∈R

1

2mj
P̂
(
p̂j −∇jµ̃Â + P̃j

)2P̂ + Û†ĤelÛ + Ĥph,

where the sum over j only includes nuclei. In the above
expression, we did not specify the choice of P̂, which
could be either adiabatic (Eq. 26 or diabatic states
(Eq 31).

Fig. 2d shows numerical results for this Hamiltonian
for a simple 1-D proton-transfer (Shin-Metiu83) molec-
ular model. The left graph shows a characterization of
this model with its adiabatic and diabatic states, dia-
batic coupling, and dipole matrix elements as a func-
tion of the proton’s 1-D coordinate, R. Additionally,
the small insets pictorially depict the ions, proton, and
electron positions for different R. The middle figure
then plots the Born-Oppenheimer surfaces as a func-
tion of R for different Hamiltonians, compared to the
zero coupling case. For R values where the polariton
states differ from the uncoupled case, the naively trun-
cated Coulomb gauge Hamiltonian results differ from
the gauge invariant results. The right figure, similarly,
shows how the naively truncated Coulomb gauge Hamil-
tonian behaves very poorly as the coupling strength is
increased for a given R value. For this model, the dipole
gauge results converge to the accuracy of the graph with
two levels, so for the results in these graphs, the dipole
gauge can be considered “exact” for this model. This
numerically demonstrates the necessity of maintaining
gauge invariance.

There are several interesting limits of Ĥp·A (Eq. 76).

Under the limiting case when A0 = 0 or µ̃ · Â =
0, both the −∇jµ̃Â and P̃j terms become 0, and

Û† = Û → P̂ ⊗ 1̂R ⊗ 1̂ph. Thus, under a such limit,

Ĥp·A → ĤM + Ĥph; hence, the matter and the cav-
ity becomes decoupled. When using adiabatic states
for the truncation, one can show that51,52 P̂p̂2

j P̂ =

(p̂j − iℏ
∑

α,β d
j
αβ |α⟩⟨β|)2, where dj

αβ ≡ ⟨α|∇j |β⟩ is
the well known derivative coupling. Besides these adi-
abatic derivative couplings, the light-matter interac-
tion also induces additional “derivative”-type couplings,
−∇jµ̃Â and P̃j , regardless of the electronic representa-

tion used in constructing P̂. When using the Mulliken-
Hush diabatic states54,55 which are the eigenstates of
the µ̃ ≡ P̂µ̂P̂ operator, such that µ̃ =

∑
ϕ µϕϕ|ϕ⟩⟨ϕ|,

one can prove that P̃j = 0 for all nuclei. This is be-

cause that ∇jµ̃ =
∑

ϕ ∇jµϕϕ|ϕ⟩⟨ϕ|, thus both µ̃Â

and [µ̃Â, p̂j ] become purely diagonal matrices, hence

all of the higher order commutators in Û†p̂jÛ become

zero, resulting in P̃j = 0 for j ∈ R. Unfortunately,

Ĥp·A no longer remains in a minimum coupling form
in Eq. 45 (except when approaching the complete elec-
tronic states limit), by only involving charges but not

higher multipole moments. Nevertheless, Ĥp·A is in-

variant from Ĥd·E through the Û transformation, thus
resolving the gauge ambiguity between them.

Additionally, this method explains why the proposed
resolution of ambiguities in Ref. 42 only works for mat-
ter systems that can be well approximated by two-level
systems without a permanent dipole. For those types of
systems, the truncated dipole operator is proportional
to the Pauli σ̂x matrix, and P̂µ̂P̂ = µegσ̂x, where µeg

is the transition dipole from the ground state to the
excited state. In this special case, P̂µ̂nP̂ ≈ (P̂µ̂P̂)n.
Then, the properly truncated PZW operator is Û ≈
P̂Û P̂.

In Ref. 74, the closed analytic formalism for arbitrary
two-level molecular systems is presented. Without the
loss of generality, such a system can be expressed in
terms of the diabatic states {|0⟩, |1⟩}, which represent a
broad range of chemical systems.84–86 To simplify the
algebra, one assumes there is only one nuclear DOF with
the coordinate R̂ and momentum p̂R, and µ̂ is always
aligned along the polarization direction ê. Note that
both the transition and permanent dipoles are functions
of R̂.

In this special case, the properly truncated PZW op-
erator becomes,

Û = exp
[
− i

ℏ
µ̃ · Â

]
, (77)

where µ̃ = µ10σ̂x + 1
2 (µ00(R̂)−µ11)σ̂z + 1

2 (µ00 +µ11)1̂r

and µ̃’s explicit dependence on R̂ is suppressed in this
notation for clarity. Since µ̃ can be written as a sum
of Pauli matrices, evaluating Û†ĤelÛ and P̃j becomes
tractable using the Pauli matrix commutator relations.

The electronic Hamiltonian in this truncated sub-
space is Ĥel = P̂ĤelP̂ = ε(R̂)σ̂z + V̄(R̂)P̂ + V10(R̂)σ̂x,
where ε(R̂) = 1

2 (V00(R̂) − V11(R̂)), V̄(R̂) = 1
2 (V00(R̂) +

V11(R̂)), and Vφϕ(R̂) = ⟨φ|Ĥel|ϕ⟩ (i.e., they are Ĥel’s
matrix elements). Using the above spin representation
for µ̃ and Ĥel, as well as the BCH identity, one can an-
alytically show (Ref. 74) that the terms in Ĥp·A from
Eq. 76 are

Û†ĤelÛ = Ĥel +
(
ε(R̂) sin θ − V10(R̂) cos θ

)(
sin [ξÂ]σ̂y

+ cos θ
(
1 − cos[ξÂ]

)
σ̂x + sin θ

(
cos[ξÂ] − 1

)
σ̂z

)
, ,

(78)

where ξ =
√

(µ00 − µ11)2 + 4µ2
10, tan θ = 2µ01/(µ00 −

µ11), and the residual momentum is P̃j =
1
2

(
∇R tan θ

)
cos2 θ

[(
1 − cos[ξÂ]

)
σ̂y +

(
(sin θ)σ̂z −

(cos θ)σ̂x
)(

sin[ξÂ] − ξÂ
)]

. Thus, for a given Ĥel(R)
and µ̃(R), under a two-level approximation, the prop-
erly truncated Coulomb gauge Hamiltonian can be
written in this analytic form.
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2.5 Connections to Quantum Optics
Models

In quantum optics, a two-level atom coupled to a sin-
gle mode in an optical cavity is a well-studied subject.
This setup has been described using well-known model
Hamiltonians, such as the quantum Rabi model87,88 and
the Jaynes-Cummings model.18 Since these two models
are also widely used in recent investigations of polariton
chemistry, here we briefly derive them from the trun-
cated Pauli-Fierz Hamiltonian (Eq. 70). The original
derivations18,87,88 of these two models are slightly dif-
ferent than the procedure outlined here, but the general
physical insights are the same.

We consider a molecule with two electronic states and
consider its electronic Hamiltonian as

Ĥel = Eg(R)|g⟩⟨g| + Ee(R)|e⟩⟨e|, (79)

such that the transition dipole is µeg = ⟨e|µ̂|g⟩. Note
that the permanent dipoles in a molecule µee = ⟨e|µ̂|e⟩,
µgg = ⟨g|µ̂|g⟩ are not necessarily zero, as opposed to
the atomic case where they are always zero. Hence, it
is not always a good approximation to drop them. The
breakdown of the quantum optics models for computing
polariton potential energy surface will be discussed in
Sec. 3.1.3

The Rabi model assumes that one can ignore the per-
manent dipole moments (PD), and leads to the dipole
operator expression in the subspace P̂ = |g⟩⟨g| + |e⟩⟨e|
as follows

P̂µ̂P̂ = µeg(|e⟩⟨g| + |g⟩⟨e|) ≡ µeg(σ̂† + σ̂), (80)

where we have defined the creation operator σ̂† ≡ |e⟩⟨g|
and annihilation operator σ̂ ≡ |g⟩⟨e| of the electronic ex-
citation. The PF Hamiltonian (Eq. 55) in the subspace
P̂ thus becomes the following ĤnPD with no permanent
dipole (nPD)

ĤnPD = Ĥel+Ĥph+ωcA0·µeg(σ̂†+σ̂)(â†+â)+ωc(A0·µeg)2.
(81)

Dropping the DSE (the last term) in Eq. 81 leads to the
quantum Rabi model as follows

ĤRabi = Ĥel + Ĥph + ωcA0 ·µeg(σ̂† + σ̂)(â† + â). (82)

The exact solution of the quantum Rabi Hamiltonian
ĤRabi was first discovered by Braak89 by noticing the
parity symmetry in the Rabi model is sufficient to
solve the Hamiltonian exactly using bosonic operators
in the Bargmann space.89 Later, it was shown that the
same solution can also be obtained from the Bogoliubov
transformation.90

Dropping both the DSE and the counter-rotating
terms (CRT) σ̂†â† and σ̂â leads to the well-known
Jaynes-Cummings (JC) model18 as follows

ĤJC = Ĥel + Ĥph + ωcA0 · µeg(σ̂†â+ σ̂â†), (83)

which is Eq. 2 in the Introduction (Sec. 1.1) when choos-

ing gc = ωcA0 · µeg.
As we go beyond these simplified Hamiltonians, how-

ever, the most physically relevant coupling parameter
becomes ambiguous. The dipole operator is no longer
expressed as P̂µ̂P̂ = µegσ̂x, and instead takes the form
of an arbitrary Hermitian matrix as indicated in Eq. 28
(for adiabatic basis) or Eq. 29 (for MH diabatic basis),

Of course, the JC model and the Rabi model, which
are motivated to describe two-level atoms interacting
with a single-mode cavity, will eventually break down
with an increasing light-matter coupling strength. For
atomic cavity QED, the light-matter coupling constant
is gc = ωcA0 · µeg/ℏ. For comparative purposes, one
often uses the unitless coupling parameter defined as

η =
gc
ωc

= A0 · µeg/ℏ. (84)

Under the condition η < 0.1, the JC model provides a
reasonably accurate answer compared to the “exact” an-
swer provided by ĤnPD (under the single molecule, sin-
gle mode, and long wavelength approximations, without
any permanent dipole). For the ultra-strong coupling
regime 0.1 < η < 1, or deep-strong coupling regime
η > 1, the JC model starts to break down. A de-
tailed discussion of this breakdown can be found in Ref.
38. Interestingly, in the ultra-strong coupling regime,
the JC model actually predicts more accurate results
compared to the Rabi model because the DSE term
ω(A0 · µeg)2 in ĤnPD (Eq. 81) partially cancels with
the energy shift (commonly referred to as the Bloch-
Siegert shift91,92) caused by the counter-rotating wave
terms σ̂†â† and σ̂â. A detailed analysis can be found
in Ref. 12, as well as in Ref. 93. Interestingly, one can
define unitary gauge transformation that depends on
the coupling strength, such that the JC model (under
this gauge transformation) remains reasonably accurate
throughout different ranges of coupling strength.76

Fig. 3 presents the three lowest polariton eigenener-
gies of a two-level atom (Eq. 79 without any nuclear
DOFs) coupled to a single mode cavity. The figure
presents three polariton states |g, 0⟩, |−, 0⟩ and |+, 0⟩.
Fig. 3a presents the polaritonic eigenvalues as a function
of η = gc/ωc at ∆E − ℏωc = 0 (resonance condition).
Fig. 3b presents the polaritonic eigenvalues as a function
of the detuning ∆E − ℏωc with a light-matter coupling
strength ℏgc = 1 eV. The eigenenergies are obtained at
various levels of theory, including the JC model (yellow)
in Eq. 83 that ignores both CRT and DSE, the rotat-
ing wave approximation (RWA) Hamiltonian (magenta)
that only ignores the CRT term but not the DSE term,
the Rabi model (cyan) in Eq. 82 that ignores the DSE,
and the full PF treatment (black dashed) in Eq. 70 that
includes both the CRT term and DSE. The perturbation
theory (PT) (red) which treats CRT perturbatively (see
details in Ref. 12) and includes the exact DSE and pro-
vides very accurate polariton eigenenergies in the range
of the parameter regime investigated here.

In the JC model Hamiltonian (yellow), the ground
state does not shift with increasing η, while the |+, 0⟩
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Figure 3: Polariton eigenspectrum of a two-level
system coupled to cavity using various light-matter
Hamiltonians. Polariton eigenspectrum (a) as a function
of η = gc/ωc at zero detuning ∆E − ℏωc = 0 and (b) as
a function of the detuning ∆E − ℏωc at ℏgc = 1.0 eV ob-
tained with various levels of theory, including the exact so-
lution of PF Hamiltonian (black dashed), JC Hamiltonian
(yellow) that assumes RWA and ignores DSE, Rabi Hamilto-
nian (cyan) that ignores DSE, RWA (magenta) that ignores
counter-rotating term (CRT), and Perturbation theory (PT)
(red) which treats CRT perturbatively. Adapted with per-
missions from Ref. 12. Copyright 2020 American Chemical
Society.

and |−, 0⟩ states linearly split as a function of η. This
behavior can be easily understood by examining the
JC eigenspectrum in Eqn. 5. The Rabi model (cyan),
which only accounts for the CRT, overestimates the neg-
ative energy corrections and incorrectly decreases ener-
gies for all states. Thus, the Rabi model predicts that
the ground state energy becomes unstable. The RWA
Hamiltonian (magenta), which ignores the CRT but in-
cludes the DSE, overestimates the energy correction in
the positive direction and shifts all states upward. The
perturbative treatment (red) that includes CRT as a
perturbation as well as the DSE performs well and is
nearly identical to the exact PF curve within the range
of the η or ℏ∆ωc presented here. Note that in Fig. 3b,
for ℏ∆ωc < −0.5 eV, the polariton eigenenergy for
|−, 1⟩ becomes lower than |+, 0⟩. As a result, a trivial
crossing is formed between the 3rd and 4th polaritonic
eigenenergies as a function of ℏ∆ωc at ℏ∆ωc ≈ −0.5 eV.

When dealing with the full molecular cavity QED

situation, where both the permanent and transition
dipoles (Eq. 28) need to be considered, the coupling
strength gc or η (Eq. 84) no longer accurately describes
the systems because it only includes a particular value of
the transition dipole, whereas both transition and per-
manent dipoles could change their values significantly as
a function of the nuclear coordinate in a real molecular
system (see example in Fig. 6b). For this case, typi-
cally two different expressions for coupling parameters
are used in the literature, either the magnitude of the

vector potential, A0 =
√

ℏ
2ωcϵ0V ,14,74,81,94,95 or a cou-

pling parameter that does not explicitly depend on the
cavity frequency44,63,66,67,93,96–103

λ =

√
ℏ
ϵ0V

. (85)

On the other hand, one should be careful because these
coupling parameters do not include the magnitude of
the dipole, either µαα(R) or µαβ(R), and both values
could vary significantly by changing R for a given sys-
tem. These values also need to be included when judg-
ing if a system is under a particular coupling strength.

Further, it should be noted that for Fabry–Pérot cav-
ities, the area of the mirrors is typically considered con-
stant when comparing different frequencies. In this case,
the cavity volume is inversely proportional to cavity
frequency, and A0 would be independent of frequency,
while λ would be frequency-dependent. For the ma-
jority of this review, these two parameters are used to
represent coupling strength.

Finally, even with the considerations of a single
molecule coupled to the single cavity mode under the
dipole approximations, we want to emphasize that the
accuracy and validity of JC and Rabi models need to
be carefully assessed before adapting them to the field
of molecular cavity QED. This is because these mod-
els only consider two electronic states {|g⟩ , |e⟩} and the
transition dipole µge(R) between them, where the per-
manent dipole is often ignored. Unfortunately, these
well-established approximations in the atomic cavity
QED can explicitly break down for molecular cavity
QED systems.6,104,105 A detailed example of the break-
down of these models is provided in Fig. 6 of Sec. 3.1.3.

2.6 Many Molecules Coupled to Many
Cavity Modes

In the previous sections, we focused on the QED Hamil-
tonians under the long wavelength approximation and
the single photonic mode approximation. However,
these approximations are not adequate to accurately
describe experiments conducted with Fabry–Pérot cav-
ities.1–4,29,31–33,106–110,110–119 In this manner, we must
start with the most general Hamiltonian in Eq. 35 and
derive the convenient expressions for model Hamilto-
nians that can accurately describe many molecules in-
teracting with many cavity modes. Specifically, many
modes are considered with many molecules, and we
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partially relax the long wavelength approximation such
that Â is no longer spatially invariant while the mat-
ter interactions are still approximated as dipoles. Such
a Hamiltonian is necessary to describe many molecules
coupled to a Fabry–Pérot cavity, depicted in Fig. 4a.
In that situation, we explicitly consider a 1-D array of
molecules.120 Several useful review articles related to
this topic can be found in Ref. 121

In Fabry–Pérot cavities, the total wavevector of the
photon can be decomposed into a component that is
perpendicular to the cavity mirror, which we denote as
kz

kz =
nzπ

Lz
, nz = 1, 2, ...∞. (86)

The value of kz is explicitly quantized, due to the
boundary condition imposed by two mirrors, where Lz

is the distance between the two mirrors. In the litera-
ture,32,106 kz is often denoted as k⊥ because it is per-
pendicular to both mirrors (not to be confused with the
transverse component of the field in Eq. 37a). There are
two more degenerate wavevectors, kx and ky, with their
directions parallel to the mirror, and are commonly de-
noted as k∥ in the literature (not to be confused with
the longitudinal component of the field, such as Eq. 36).
Both kx and ky are in principle, quasi-continuous, be-
cause the boundary length for the lateral directions (x
and y in Fig. 4) are generally much larger than the
mirror distance Lz. The cavity quantization volume is
V = S · Lz, where S represents the effective quantiza-
tion area at which molecules are coupled to the cavity.
Using the experimentally measured ΩR and V, one can
estimate how many molecules N are effectively coupled
to the cavity.32

Overall, this leads to many photonic modes that can
be energetically close to a matter state transition, such
as electronic excitations32,120–126 or vibrational exci-
tations.1,4,108,110,119,127,128 For these cavities, the pho-
tonic dispersion relations are the same for both the
transverse electric (TE) and transverse magnetic (TM)
polarizations, and experimentally, one can easily access
both.126,129,130

For simplicity, let us focus on the TE mode, and set
ky = 0. For a field propagation direction k (see Fig.4),
the total energy of the photon is

Eph(θ) = ℏωk =
ℏc
nc

√
k2z + k2x =

ℏc
nc
kz
√

1 + tan2 θ,

(87)
where c is the speed of the light, nc is the refractive
index inside the cavity, and θ is the angle of k from the
normal of the mirror (see Fig. 4a). This angle θ is often
referred to as the “incident angle” of the photon, which
is tan θ = kx/kz. When θ = 0, we have

Eph(0) =
ℏc
nc
kz ≡ ℏωc, (88)

where ωc is the photon frequency of the quantized direc-
tion (z-direction) in the cavity, used in the single mode
approximation of the cavity QED (see Eq. 42, Eq. 44,

Molecule

"̂!"
"̂!#

!

xy
z

"
#!

#"

xJ
Mirror

Molecule

(a)

θ (deg)

(b)

θ (deg)

θ (deg)

En
er

gy
 (e

V)

En
er

gy
 (e

V)
En

er
gy

 (e
V)

(c) (d)

Exciton Exciton

Exciton

Cavity
Mode

Cavity
Mode

Cavity
Mode

UP
UP

UP

LP
LP

LP

"̂!"
"̂!#

!

xy
z

"
#!

#"

xJ
Mirror

Molecule

(a)

θ (deg)

(b)

θ (deg)

θ (deg)

En
er

gy
 (e

V)

En
er

gy
 (e

V)
En

er
gy

 (e
V)

(c) (d)

Exciton Exciton

Exciton

Cavity
Mode

Cavity
Mode

Cavity
Mode

UP
UP

UP

LP
LP

LP

"̂!"
"̂!#

!

xy
z

"
#!

#"

xJ
Mirror

Molecule

(a)

θ (deg)

(b)

θ (deg)

θ (deg)

En
er

gy
 (e

V)

En
er

gy
 (e

V)
En

er
gy

 (e
V)

(c) (d)

Exciton Exciton

Exciton

Cavity
Mode

Cavity
Mode

Cavity
Mode

UP
UP

UP

LP
LP

LP

2.5

2.3

2.1

-20 -10 0 10 20 -10 0 10 20 -10 0 10 20
θ (degree) θ (degree) θ (degree)

xy
z

Mirror

!̂!"!̂!#
!
"

#!

#"

xA

En
er

gy
 (e

V)

(a)

(b) (c) (d)

Figure 4: Many Molecules and Cavity Modes. (a)
Schematic of many co-linear molecules in a Fabry–Pérot
(FP) cavity. êTE and êTM are the unit vectors indicating
the directions of the Transverse electric (TE) and Transverse
magnetic (TM) polarized components of Ê⊥, respectively.
(b-d) Schematic dispersion for zero detuning (b), positive
detuning (c), and negative detuning (d). Plot of the upper
and lower polariton states in a FP cavity (purple solid) as a
function of the incident angle (θ) with the bare cavity dis-
persion (red lines) and the exciton dispersion (blue lines).

and Eq. 56 in Sec. 2.3). Further, under the single mode
approximation (by setting kx = 0) the photonic mo-
mentum k (or the field propagation direction) will be
perpendicular to the cavity mirror.

Note that in principle, the Fabry–Pérot cavity has an
infinite set of possible kz that satisfy the mirror bound-
ary conditions (Eq. 86). Often, one only considers the kz
that is close to the matter excitation energy. However,
when Eph is much smaller than the matter excitation
energy, multiple modes that contain various kz (Eq. 86)
in the range of matter energy and a given range of θ have
to be considered.122,125 In this review, we only consider
the case for a single kz (such that kz = π/Lz).

Hence, in the regime of small incident angles, the cav-
ity photon energy can be approximated as

Eph(θ) ≈ ℏωc(1 +
1

2
tan2 θ) ≈ ℏωc(1 +

1

2
θ2), (89)

which is the usual quadratic dispersion relation observed
in the experiments.32,121,126,131 On the other hand, the
matter energy is considered to be invariant in the typical
range of the angles θ measured in the experiments, and
thus EM = ℏωeg + Eg = Ee, where ωge = (Ee − Eg)/ℏ.
If one considers θ as a parameter (under the continuous
limit of kx), and the Tavis-Cummings model to describe
light-matter interactions (see Sec. 1.2), one can then
write down the following two-by-two matrix for polari-
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ton Hamiltonian in the {|G, 1⟩, |B, 0⟩} subspace121

Ĥpl(θ) =

[
Eph(θ) ℏ

√
Ngc(θ)

ℏ
√
Ngc(θ) EM

]
. (90)

The diagonal terms are Eph(θ) (red parabolic curves
in Figure 4b-d) and EM (cyan straight-line in Fig-
ure 4b-d), and the coupling term ℏ

√
Ngc(θ) causes the

“band bending” when the matter and photon dispersion
branches intercept. Note that gc(θ) picks up a θ depen-
dence from the cavity dispersion relation of ωk (Eq. 87).

Figs. 4b-d show examples of this θ dependence for a
Fabry–Pérot cavity for the situation of (b) zero light-
matter energy detuning, (c) positive detuning, and
(d) negative detuning, where the polariton dispersion
curves are depicted in purple. For each k (that corre-
sponds to a specific θ or kx), the model Hamiltonian in
Eq. 90 is diagonalized to find the dispersion plots. Sim-
ilarly, the polariton eigenenergies are now functions of
k (or equivalently, θ) as follows

E±(k) =
1

2
(Eg+Ee)+ℏωk±

1

2

√
(∆E − ℏωk)2 + 4Ngc(k)2.

(91)
The dispersion plots in Figs. 4(b-d) plot these eigenen-
ergies for different kz values (corresponding to the fre-
quency for θ = 0). The corresponding quantum eigen-
vectors for the |±⟩ polariton states are

|+⟩ = cos(ΘN (k))|B, 0⟩ + sin(ΘN (k)) |G, 1⟩ (92a)

|−⟩ = − sin(ΘN (k))|B, 0⟩ + cos(ΘN (k)) |G, 1⟩ , (92b)

where the mixing angle

ΘN (k) =
1

2
tan−1

(2
√
Nℏgc(k)

ℏωk − ∆E

)
, (93)

explicitly depends on the wavevector, according to the
dispersion relation in Eq. 87. The expansion coefficients
for the states in Eq. 92 are often referred to as the Hop-
field coefficients132 which indicate the character of po-
lariton states32,131

X(k)+ = cos ΘN (k), C(k)+ = sin ΘN (k), (94)

where X(k)+ is the exciton character and C(k)+ is the
photonic character of the |+⟩ state.131

Note that for Fabry–Pérot cavities, ωk is polarization
independent, so typically only the TM mode is consid-
ered. We emphasize that for a plasmonic cavity, Eq. 87
no longer always holds. For example, the plasmonic
cavity133,134 has a similar dispersion for the TM polar-

ization ωk,TM = c
neff

√
k2x + ( 2π

ax
)2, but a linear disper-

sion for the TE mode ωk,TE = c
neff

( 2π
ax

± kx), where ax
is the lattice constant in the x-direction for the plas-
monic lattice and neff is the effective index of refraction
of the ambient material in the cavity. Due to this polar-
ization dependence for the cavity dispersion with plas-
monic cavities, both polarizations must be considered

for such systems.133–138 However, for this section, we
will focus on Fabry–Pérot cavities. We refer the reader
to Ref. 135 for further discussions on plasmonic cavities.

With the motivation of this model in mind, in this sec-
tion, we present first a generalized dipole-gauge Hamil-
tonian and then a more approximated generalized Tavis-
Cummings Hamiltonian.

2.6.1 Many-Molecule Dipole-Gauge Hamilto-
nian

When considering cavities with many kx modes, the en-
ergy eigenspectrum is typically visualized on a disper-
sion plot, where the eigenenergies are plotted as a func-
tion of kx. To find these kx-resolved energies and states,
the Hamiltonian in question needs to be truncated to
the set of modes with a given kx. This truncation is
classified by the projection operator,

P̂kx = 1̂M ⊗
∑

ky,nkx,kz

|nkx,kz ⟩⟨nkx,kz | , (95)

where 1̂M is the identity for all matter degrees of free-
dom, and {|nkx,kz ⟩} are the Fock states for a given kx
and kz. To avoid gauge ambiguities, this mode trun-
cation can be performed as discussed in Ref. 81, where
the P̂kx

enters into the exponential of the PZW oper-
ator (See Eq. 73). Then, for each kx, this truncated
Hamiltonian is diagonalized to find the dispersion plots
and corresponding Hopfield132 coefficients as a function
of kx.

To derive such a Hamiltonian, we start from the mini-
mal coupling Hamiltonian (Eq. 45), following the frame-
work discussed in Ref. 46. It is convenient to rewrite
this Hamiltonian by grouping the matter particles into
well-separated molecules, where the intermolecular dis-
tances are much longer than the intramolecular;; dis-
tances. In such circumstances we can write Â(xj) ≈
Â(x̄J) for all j particles within the molecule J with
center of mass of the molecule x̄J and the total Hamil-
tonian is written as

Ĥ
[N ]
p·A =

∑
k

ℏωkâ
†
kâk +

∑
J,j∈J

1

2mj
(p̂j − zjÂ(x̄J))2

+ V̂ JJ
coul +

∑
I ̸=J

V̂ IJ
coul, (96)

where {I, J} are the indices over the molecules in the
system whose centers of mass are located at x̄I/J , {j}
are the indices over each particle j in the molecule
J , V̂ JJ

coul is the intramolecular Coulomb potential in

molecule J , and V̂ IJ
coul is the intermolecular Coulomb

potential between molecules I and J .
To transform this into the dipole gauge, we use the

PZW operator (Eq. 48), but now with Â(x̄J) not under
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the long wavelength approximation

Â(x̄J) =
∑
k,n

√
ℏ

2ϵ0ωkV
êk,n

[
e−ik·x̄J â†k,n + eik·x̄J âk,n

]
,

(97)
where the general expression of the quantized electric
field E⊥ and magnetic field B̂ can be found in stan-
dard QED textbooks (for example Refs. 45,46 or the
Appendix of Ref. 12).

The corresponding PZW gauge transform operator
becomes a multi-centered PZW operator46,139 expressed
as

ÛN = exp
[
− i

ℏ

N∑
J=1

µ̂J · Â(x̄J)
]
, (98)

which has specific centers of molecules x̄J . This ÛN is
still a boost operator on p̂j (of the jth charged parti-
cle that belongs to the Jth molecule), given that we as-
sume the individual molecules are neutral, much smaller
than the wavelength of the mode, and can be well
described by their dipoles.46 Under these approxima-
tions, ÛN p̂jÛ

†
N = p̂j + qjÂ(x̄J). We can also evaluate

ÛN âkÛ
†
N as,46

ÛN âkÛ
†
N = âk +

∑
J

i

√
ℏ

2ϵ0ωkV
ênµ̂J(R̂J)e−ik·x̄J ,

(99)

where µ̂J(R̂J) is the dipole operator of molecule J with

the nuclear configuration R̂J . Additionally, the phase
rotation from Eq. 54 can be generalized for many modes
as

Û
[N ]
0 = e−iπ

2

∑
k,n â†

k,nâk,n , (100)

where all the modes now experience a phase rotation.
Now, we can write our many molecules and many

modes Pauli-Fierz Hamiltonian in the full Hilbert space
as,

Ĥ
[N ]
PF = ĤM +

∑
k,n

[
ℏωk(â†kâk +

1

2
) (101)

+
∑
J

√
ωk

2
λk,n · µ̂J(R̂J)(âke

ik·x̄J + â†ke
−ik·x̄J )

+
∑
I,J

1

2
(λk,n · µ̂I(R̂I))(λk,n · µ̂J(R̂J))e−ik·(x̄I−x̄J )

]
,

where we introduced a coupling parameter for this more

complicated system, λk,n =
√

ℏ
ϵ0V êk,n. While this

is rigorous, its computational cost can quickly become
enormous. The following simple basis size analysis can
demonstrate this. For j molecules with l electronic
states and m modes with n Fock states, the basis size
scales as ljnm. Due to this unfavorable scaling, the
generalized Tavis-Cummings Hamiltonian is a useful ap-
proximation to simulate these systems.

2.6.2 Generalized Tavis-Cummings Hamilto-
nian

Intuitively, the generalized Tavis-Cummings (GTC)
Hamiltonian is to the generalized dipole gauge Hamil-
tonian as the Jaynes-Cummings Hamiltonian is to the
traditional dipole gauge Hamiltonian. In this manner,
there are a series of approximations from Eq. 101 to get
the GTC Hamiltonian. Namely, we first truncate each
molecule to the two-level approximation and remove the
permanent dipole, such that the dipole operator for a
given molecule can be written as µ̂J = µeg

J σ̂x, where
µeg

J is the transition dipole moment between the ground
and excited state for molecule J . Then, the dipole self-
energy terms (last line of Eq. 101) are neglected entirely.
Finally, the rotating wave approximation is performed
such that the interaction terms go as√

ωk

2
λk,n · µ̂J(R̂J)(âke

ik·x̄J + â†ke
−ik·x̄J ) →√

ωk

2
λk,n · µeg

J (R̂J)(σ̂†
J âke

ik·x̄J + σ̂J â
†
ke

−ik·x̄J ),

where σ̂J is the lowering operator for molecule J ’s two-
level system. This series then leads to an expression of
the GTC Hamiltonian

ĤGTC = ĤM +
∑
k,n,J

[
ℏωk(â†kâk +

1

2
) (102)

+

√
ωk

2
λk,n · µeg

J (σ̂†
J âke

ik·x̄J + σ̂J â
†
ke

−ik·x̄J )

]
.

Further making a single cavity mode approximation
(only keeping one k with kx = 0, where ê is along x),
with frequency ωc) and the long wavelength approxima-
tion, this Hamiltonian reduces to the Tavis-Cummings
Hamiltonian discussed in Sec. 1.2.

The benefit of having this generalized Tavis-
Cummings model is that now it is easier to run sim-
ulations in the single excited subspace since different
excitation levels are now decoupled from each other.
This drastically reduces the computational cost of
modeling large systems. In particular, since even in
simulations N is typically fairly large, most numerical
calculations using this model consider only the first
excitation subspace. This drastically reduces the ba-
sis size from 2N × NF for NF Fock states to (N + 1).
Recently, studies involving this GTC Hamiltonian have
been able to shine new light on the dispersion plots seen
in experiments32,106 (see Fig. 4(b-d)).

One such observed phenomenon that can be pre-
dicted by the GTC is the presence of collective ”bright”
and “dark” states formed by the hybridization of each
molecule with each kx mode. It should be noted that
these terms refer to the presence (or lack thereof) of
photonic character in the energy eigenstates of this sys-
tem. By hybridizing N singly excited molecular states
with 0 photons with a collective molecular ground state
with a single photon, N + 1 energy eigenstates are

21



formed. The upper and lower polaritons make up the
two bright states, and the other N − 1 states become
dark states with no photonic character, making them
energetically degenerate (when ignoring disorder).

It should be noted that the typical Tavis-Cummings
Hamiltonian, as discussed in the Introduction, is found
by making the long wavelength approximation on the
GTC Hamiltonian shown in Eq. 102. This simply re-
moves the phase terms, exp{±ik · x̄J}, essentially stat-
ing that the molecules are identical and indistinguish-
able in position.

The Tavis-Cummings Hamiltonian in general can be
used with various matter Hamiltonians. One specific
model that is commonly used is the Holstein-Tavis-
Cummings (HTC) model.8,140 In this model, the mat-
ter Hamiltonian consists of an array of two-level systems
with phenomenological phonon modes added to the sys-
tem. This HTC Hamiltonian can then be extended from
Eq. 12 as,

ĤHTC =
∑
J

(Ee |eJ⟩⟨eJ | + Eg |gJ⟩⟨gJ |) + ℏωc(â
†â+

1

2
)

+
∑
J

ℏgc(σ̂†
J â+ σ̂J â

†) +
∑
ν

ων b̂
†
ν b̂ν

+
∑
J,ν

ℏgJν (b̂†ν + b̂ν)σ̂†
J σ̂J , (103)

where b̂†ν and b̂ν are the creation and annihilation oper-
ators for the νth phonon mode, respectively, with fre-
quency ων , phonon coupling strength gJν and molec-

ular excitation operator σ†
J = |eJ⟩⟨gJ |. Both the

GTC Hamiltonian and the HTC Hamiltonian have been
extensively used in recent theoretical simulations in
molecular polariton systems.32,104,120,121,134,137,141,142

The details will be discussed in Sec. 6.1.

3 Ab initio Methods for Molecular Po-
laritons

Coupling polaritonic Hamiltonians such as Eq. 55 with
realistic, ab initio calculations for molecular systems has
generated much recent work. Most of the molecular ab
initio polariton chemistry works are based on the single-
mode light-matter interaction Hamiltonian in Eq. 57,
which is equivalent to Eq. 56 as explained in Sec. 2.3.3.
Here, for consistency, we choose to use the PF Hamil-
tonian in Eq. 56 to describe the ab initio methods. In
particular, we express Eq. 56 as follows

ĤPF = ĤM +
1

2
p̂2c +

1

2
ω2
c

(
q̂c +

1

ωc
µ̂ · λ

)2
, (104)

= ĤM + ωcâ
†â+

√
ωc

2
λ(µ · ê)(â+ â†) +

λ2

2
(µ̂ · e)2,

where to be consistent with the ab initio polariton liter-
ature, we use the light-matter coupling strength defined

as44,63,66,67,93,96–103,143

λ =

√
ℏ
ϵ0V

ê =
√

2ωcA0 ≡ λ · ê, (105)

where ê is the electric field unit polarization vector, V
is the cavity volume, and ϵ0 is the permittivity of free
space. Note that in Sec. 2, we have used the magni-
tude of the vector potential, A0, itself as the coupling
strength. On the other hand, when coupling solid state
materials, the total dipole operator is no longer well de-
fined, and Ĥp·A (Eq. 45) is often used. For example,
in Ref. 144 and Ref. 145, the polariton states of a 2D
TMD coupled to an optical cavity are computed based
on Ĥp·A, where one needs to evaluate the matrix ele-
ments of the matter momentum operator.

The central task of the ab initio molecular polariton
chemistry is then to solve the polariton states and ob-
tain polariton potential energy surfaces, which are the
eigenstates and eigenenergies of the following polariton
Hamiltonian

Ĥpl = ĤPF − T̂R = Ĥel +
1

2
p̂2c +

1

2
ω2
c

(
q̂c +

1

ωc
µ̂ · λ

)2
,

(106)

where ĤPF is expressed in Eq. 104, and Ĥel is the elec-
tronic Hamiltonian defined in Eq. 20. In term of the
raising and lowering operator of the field, the polariton
Hamiltonian in Eq. 106 becomes

Ĥpl =Ĥel + ℏωc(â
†â+

1

2
) (107)

+

√
ωc

2
λ(µ · ê)(â+ â†) +

λ2

2
(µ̂ · e)2.

The eigenequation of Ĥpl is expressed as

Ĥpl|Ψa(R)⟩ = Ea(R)|Ψa(R)⟩, (108)

where |Ψa(R)⟩ is referred to as the ath polariton state
and Ea(R) is the ath polariton surface or cavity Born-
Oppenheimer surface.146,147 Note that both |Ψa(R)⟩
and Ea(R) parametrically depend on R, analogous to
Eq.21 for the adiabatic states and energies of the bare
molecule.

By far, there are two popular approaches in liter-
ature to solving this coupled electron-photon-nuclear
system described in Eq. 108. Approach (I): solving
the electron-nuclear problem followed by diagonalizing
Eq. 55 with these electronically adiabatic basis states
along with a photonic basis (e.g., number/Fock states,
generalized coherent states,148 polarized Fock States,41

etc.). Approach (II): incorporating the photonic DOFs
(through Eq. 55) into the common electronic struc-
ture framework whereby self-consistently solving the
electron-photon-nuclear problem in one step. Both
methods afford adiabatic polaritonic states as a result.
This is because the two methods only only differ in the
resulting basis describing the polaritonic system.
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In Approach (I), the basis of electronic adiabatic
states and, e.g. number states, never changes, and
upon diagonalization of Eq. 55 gives some description
of the polaritonic states, which may require extensive
basis sets for the electronic DOFs.93 This scheme will
be referred to as the frozen adiabatic basis approach or
parameterized QED (pQED).

In (II), the initially adiabatic electronic and photon
basis sets are self-consistently updated to minimize the
number of basis states needed to properly describe the
polaritonic system, which, in general, should give a more
accurate and trustworthy description of the ground and
excited states due to its variational nature. This scheme
will be referred to as the self-consistent QED scheme
(scQED). In this scheme, the electronic DOFs will be
perturbed by the presence of the photonic terms in the
Hamiltonian, which has led to studies involving how
the ground state orbitals will react to these additional
photonic terms, which will be discussed in more detail
later.102,149,150

3.1 Parameterized QED Approach

3.1.1 Adiabatic-Fock Electron-Photon Basis

We now discuss a simple approach to solve the QED
problem where one treats the electronic and photonic
basis states as frozen (i.e., not self-consistently up-
dated). This is often referred to as the “adiabatic”,
frozen basis, or parameterized QED approach, and
is commonly used in the atomic cavity QED prob-
lems.72,74 We will exclusively refer to this procedure
as the parameterized QED (pQED) approach in this
review. In this approach, one first solves Eq. 21 us-
ing any electronic structure method of choice, obtain-
ing the adiabatic electronic states, |ψα(R)⟩. One can
then construct the tensor product of adiabatic elec-
tronic states, |ψα(R)⟩, and Fock states, |n⟩, as the ba-
sis, |ψα(R), n⟩ ≡ |ψα(R)⟩ ⊗ |n⟩, where the character of
this basis explicitly depends on the nuclear position, R.
This basis is commonly referred to as the adiabatic-Fock
basis.

Because we are going to work with a finite set of elec-
tronic states, that means one should use Eq. 70 for ĤPF,
and the polariton Hamiltonian in the finite electronic
space is

Ĥpl = ĤPF−T̂R = P̂ĤelP̂+
1

2
p̂2c+

1

2
ω2
c

(
q̂c+

1

ωc
λ·P̂µ̂P̂

)2
,

(109)
where the matter state truncation needs to be per-
formed as (P̂µ̂P̂)2 and not P̂µ̂2P̂ (See Sec. 2.4.2 for
a detailed discussion). For the polariton Hamilto-

nian in Eq. 106 one can use the basis {|ψα(R), n⟩}
to evaluate the matrix elements (Ĥpl)αβ,nm =
⟨ψα(R), n|Ĥpl|ψβ(R),m⟩ resulting in96,143

(Ĥpl)αβ,nm = (Eα(R) + nωc)δαβδnm (110)

+

√
ωc

2
λ(µαβ(R) · ê)(

√
nδn,m−1 +

√
n+ 1δn,m+1)

+
1

2
λ2

N∑
γ=1

(µαγ(R) · ê)(µγβ(R) · ê))δnm

= (Eα(R) + nℏωc)δαβδnm + µ̃αβ(R)ηnm +Dαβ(R)δnm

where {α, β, γ} label the electronic adiabatic states
(where there is a total of N electronic adiabatic states
being considered), {n,m} label the photonic Fock
states, ê is the polarization unit vector of the elec-
tric field, µ̃αβ =

√
ωc

2 λ(ê · µαβ), ηnm = (
√
nδn,m−1 +√

n+ 1δn,m+1), and Dαβ = 1
2λ

2
∑

γ(µαγ · ê)(µγβ · ê).
Here, only the electronically adiabatic state energies Eα

and transition dipole matrix elements µαβ are required
as input. As has been known for many decades, solving
the many-body electronic system is not trivial, while
the harmonic oscillator problem is an easy text book
problem. The purpose of this pQED procedure is to
make use of the simplicity of the photonic sub-system,
while still relying on complicated many-body methods
to extract the necessary information from the electronic
sub-system as input.

Upon diagonalizing the matrix of Ĥpl (Eq. 110), one
obtains the expansion coefficients for the polaritonic
states {|Ψi(R)⟩} in the basis of the adiabatic electronic
and Fock states as,

|Ψa(R)⟩ =
∑
α,n

caα,n|ψα(R), n⟩, (111)

where the coefficients caα,n(R) = ⟨ϕα(R), n|Ψa(R)⟩ can
be used to compute any observables of the resulting po-
laritonic system (which will be revisited later). Note
that the expansion coefficients also explicitly depend on
the nuclear configuration, due to the R-dependent adi-
abatic states |ϕα(R)⟩. This is also the common proce-
dure in quantum optics to solve polariton eigenstates of
model systems couple to cavity, for example, the results
presented in Fig. 2.

More practically, the construction of the Hamil-
tonian matrix can be easily achieved through ten-
sor products, but it is worth examining the block
structure of the matrix to understand how the
dipole matrix plays such an important role in re-
solving the low-lying polaritonic states. The Hamil-
tonian matrix (Eq. 110) can be written as

Ĥpl =



E0 +D00 D01 · · · µ̃00 µ̃01 · · ·
D01 E1 +D11 · · · µ̃01 µ̃11 · · ·

...
...

. . .
...

...
...

µ̃00 µ̃01 · · · E0 + ωc +D00 D01 · · ·
µ̃01 µ̃11 · · · D01 E1 + ωc +D11 · · ·

...
...

...
...

...
. . .


=


M0 µ̃ 0 · · · 0

µ̃ M1

√
2µ̃ · · · 0

0
√

2µ̃ M2 · · · 0
...

...
...

. . .
...

0 0 0 · · · MNF

 ,

(112)
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Figure 5: Norm of the transition dipole vector ma-
trix elements |µ⃗| calculated with TD-DFT/B3LYP
for the lowest 20 electronic states of four molecules.
(a) Formaldehyde. (b) Aminopropenal. (c) LiF. (d) 35PPE.
These matrices are exactly the µ̃ block terms in Eq. 112,
and their squares forming the DSE terms which are located
inside the Mn blocks.

where Ĥpl is extremely sparse with a tri-
block-diagonal structure connecting the block
Mn =

∑N
α (Eα(R) + nℏωc)|ψα(R), n⟩⟨ψα(R), n| +∑N

α,β Dαβ |ψα(R), n⟩⟨ψα(R), n|, to the block of elec-
tronic states dressed with n ± 1 photons Mn±1 is now
evident. The Mn and Mn+1 blocks are coupled through√
n+ 1µ̃. Additionally, the electronic states with the

same photon number (i.e., n = m) are connected only
via the DSE terms Dαβ . Note here that NF is the
maximum number of included Fock basis states for the
photonic sub-system. Recall for blocks with larger num-
bers of Fock states, one picks up the additional

√
n+ 1

term on each of the µ̃ blocks, which effectively increases
the effects of the coupling terms µ̃ with increasing num-
bers of photons. Noting again the block structure in Eq.
112, the computational efficiency of this exact diagonal-
ization can be drastically increased by the use of sparse
matrix methods (e.g., Lanczos),151–153 which can be
heavily relied on for approximate diagonalization of
the lowest eigenvalues and eigenvectors without loss of
physics but with a large computational speed-up. For
this approach to be successful, one is required to treat
the number of electronic (i.e., size of M and µ̃) and
photonic basis states (i.e., NF ) as convergence param-
eters which provides a rigorous approach to solving the
QED Hamiltonian, and it is exact for an infinite basis
set. However, in the literature, often the electronic
system is truncated to only include the ground and
first excited molecular states and only the vacuum |0⟩
and |1⟩ photonic states. As we will see in the following
section, this will lead to a breakdown of the physics,
especially at larger coupling strengths specifically due
to the DSE terms connecting blocks of the Hamiltonian
far-away in energy.

Furthermore, the truncation of the electronic dipole
matrix with the number of included adiabatic electronic
states will drastically affect the results, since the tran-
sition dipole matrix appears directly in the light-matter
coupling term and its square appears in the DSE term,
thus possibly contributing a great deal of complication
to the off-diagonal (and on-diagonal) couplings due to
the shape and distribution of the transition dipole ma-
trix itself. As an example, Fig. 5 showcases the dipole
matrix for four molecules: (a) formaldehyde, (b) LiF,
(c) animopropenal, and (d) 35PPE, all of which under
recent study in polaritonic schemes.41,99,103,154 In each
case, the 20 lowest energy adiabatic electronic states are
shown as the vector norm of the dipole matrix elements
as computed at the TD-DFT level. In all four cases, al-
though symmetry-based arguments regarding selection
rules could be applied, it is hard to discern any pat-
tern of the dipole matrix elements. The two small or-
ganic molecules (Fig. 5a,c) showcase the most scattered
of the dipole matrices, the LiF (Fig. 5b) shows a block-
like structure (due to the reduced dimensionality), and
the large organic species (Fig. 5d) shows an interme-
diate regime where the high-energy states are weakly
coupled and have some structure while the low-energy
states showcase a strong degree of coupling in a block-
like fashion. Using the pQED procedure, one needs to
pay careful attention to the electronic dipole matrix and
discern the distribution of strong coupling. At larger
numbers of electronic states (i.e., ∼100 states), it is
usually straightforward to see where the strong coupling
away from the diagonal elements will decay to near zero.
This effective “width” is expected to play a direct role
in the convergence of the electronic basis states used for
the pQED procedure. However, one also requires the
square of this dipole matrix (which will change depend-
ing on the choice of electronic state truncation N ) for
obtaining the DSE terms, which adds additional com-
plexity to the situation.

3.1.2 Polarized Fock State Basis

We have outlined the pQED scheme using the adiabatic
electronic state and photonic Fock states as the basis.
Another popular representation for the photonic degrees
of freedom includes the grid basis, which is the eigenba-
sis of q̂c and has been extensively used.5,85,146,155 The
choice of basis can significantly enhance computational
efficiency or reduce the conceptual complexity of a prob-
lem.

One such basis that provides computational as well as
conceptual convenience is the recently proposed polar-
ized Fock State (PFS) basis introduced in Ref. 41. Here,
the Pauli-Fierz Hamiltonian (Eq. 109) is rewritten us-
ing an entangled electronic-photonic basis, where mat-
ter is represented in the eigenstates of the dipole opera-
tor

∑
ν P̂µ̂P̂ = µνν(R)|ϕν⟩⟨ϕν | and is referred to as the

Mulliken-Hush (MH) representation (see details around
Eq. 29). The light-matter Hamiltonian (see Eq. 109)

24



using the MH basis can be written as,

Ĥpl = Ĥel +
p̂2c
2

+
∑
ν

ω2
c

2

[
q̂c + q0ν(R) |ϕν⟩⟨ϕν |

]2
, (113)

where q0ν(R) = λ
ωc

· µνν(R). Notice that the photon
field is now described by the MH-state specific displaced
harmonic oscillators centered around −q0ν(R). This dis-
placement can be viewed as a polarization of the photon
field due to the presence of the molecule-cavity cou-
pling, such that the photon field corresponds to a non-
zero (hence polarized) electric field, in contrast to the
vacuum photon field. Within this representation the
Fock states have been explicitly shifted by a quantity
proportional to the molecular dipoles and light-matter
coupling λ, whose shift is evident from direct examina-
tion of the last term in Eq. 109.

This Hamiltonian can be now block-diagonalized us-
ing the polarized Fock basis (PFS) {|nν(R)⟩} for each
|ϕν⟩, which is defined as,

1

2

[
p̂2c + ω2

c (q̂c + q0ν(R))2
]
|nν(R)⟩ (114)

≡ (b̂†ν b̂ν +
1

2
)ℏωc|nν(R)⟩ =

(
nν +

1

2

)
ℏωc|nν(R)⟩.

The electron-photon subsystem can be represented with
the following tensor product of MH and PFS basis

|ϕν⟩ ⊗ |nν(R)⟩ ≡ |ϕν , nν(R)⟩, (115)

which is a light-matter entangled basis because one
needs to specify both the nuclear position R and the
MH diabatic electronic state |ϕν⟩ to define the polarized
Fock states |nν(R)⟩. Using this basis, Ĥpl is expressed
as

Ĥpl =
∑
ν

∑
nν

[
Vνν(R) + (nν +

1

2
)ℏωc

]
|ϕν , nν⟩⟨ϕν , nν |

+
∑
ν ̸=ϵ

∑
nν ,mϵ

⟨nϵ|mν⟩ Vνϵ |ϕν , nν⟩⟨ϕϵ,mϵ|, (116)

where we have dropped the R dependency for simplic-
ity. Note that there is a finite coupling between the MH
state ϕν with nν photons and the MH state ϕϵ with mϵ

photons through the ⟨mϵ|nν⟩ Vνϵ term, which is the
off-diagonal matrix element of the electronic Hamilto-
nian, Vνϵ, scaled by the overlap, ⟨mϵ|nν⟩, of the PFS.
This overlap is non-zero and is simply the overlap of
two harmonic oscillator wavefunctions that are shifted
from one another by q0ϵ − q0ν = λ

ωc
· [µϵϵ − µνν ]. Thus,

instead of having an explicit light-matter interaction
term

√
ωc

2 λ · µ̂(â† + â) (and the DSE) as shown in
Eq. 111, these interactions are now completely carried
through ⟨mϵ|nν⟩ · Vνϵ(R). This basis is expected (and
has been explicitly shown for models systems41) to effi-
ciently converge the photonic basis, especially when the
permanent dipoles µνν(R) in the MH basis are large.
For additional discussion, see Ref. 41. A similar basis

will be described in the Sec. 3.2 called the generalized
coherent state (GCS) basis.148

3.1.3 An example: LiF coupled to cavity with
the pQED approach

Here, we give an interesting example that has been ex-
tensively explored, which is a LiF molecule coupled to
a single mode cavity. We will only focus on the po-
lariton potential energy surfaces and not consider the
time-dependent polariton dynamics (which will be dis-
cussed in Sec. 4.1). In addition, we will only focus on
two electronic states of the LiF molecule (N = 2). We
emphasize that one should treat the number of elec-
tronic states N as a convergence parameter in pQED
calculations.93

Fig. 6 presents the polariton potential energy surfaces
predicted by various quantum optics model Hamiltoni-
ans for the model LiF molecule shown in Fig. 6a-b (the
details of the model can be found in Ref. 41). Here, only
two diabatic states are considered, which are denoted
as the ionic state |I⟩, and covalent state |C⟩. These
two diabatic states are coupled through a diabatic cou-
pling VIC(R) (dotted yellow line in Fig. 6a) that causes a
splitting (avoided crossing) near the anti-crossing of the
diabatic potentials VC(R) and VI(R) (solid red and blue
line in Fig. 6a, respectively). The adiabatic electronic
states, ground |g(R)⟩ and excited |e(R)⟩ states can be
obtained by diagonalizing the electronic Hamiltonian
Ĥel = VI(R)|I⟩⟨I|+VC(R)|C⟩⟨C|+VIC(R)(|I⟩⟨C|+|C⟩⟨I|)
at each R.

The dipole moment matrix at each R is diagonal in
this diabatic representation. This is because the dia-
batic states |I⟩ and |C⟩, so-called Mulliken-Hush dia-
batic states, are the eigenstates of the electronic transi-
tion dipole operator by definition (see discussion around
Eq.29). Fig. 6b presents the matrix elements of µ̂ in
both the diabatic (solid lines) and the adiabatic (dashed
lines) representations. As expected, the permanent
dipole for the ionic state |I⟩ (corresponding to Li+F−)
µI(R) linearly increases, while the permanent dipole for
the |C⟩ state (corresponding to covalently bonded Li-F )
µC(R) remains nearly zero with increase in inter-atomic
separation R. The adiabatic states switch their charac-
ters around R ≈ 13.5 a.u., as a result, the adiabatic
permanent dipole switches in that region, and µeg(R)
peaks at R ≈ 13.5 a.u.

The relative importance of different terms in the PF
Hamiltonian and the consequences of ignoring them is
illustrated in Fig. 6c-f. For example, the dipole self-
energy (DSE) plays a crucial role in molecular polari-
tons to guarantee a bounded ground state and excited
states,12,39 even though DSE is a constant in atomic
polaritons and are dropped out in most of the atomic
cavity QED models. This unphysical bending of po-
lariton potential is demonstrated in Fig. 6d. Without
DSE, the gauge invariance between the minimal cou-
pling Hamiltonian and the electric-dipole Hamiltonian
will break down.39,44,74 Further, without the DSE, the
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Figure 6: Molecular Polaritons in LiF Dissociation:
A comparison between ĤPF and other quantum op-
tics models. Polariton Eigenstates of a LiF molecule (two
level model system with details in Ref. 41) coupled to a
single mode optical cavity, using the (a) rigorous PF Hamil-
tonian as well as various quantum optics models, including
(b) PF Hamiltonian without DSE, (c) Quantum Rabi model
(Eq. 82) and (d) JC model (Eq. 83).

ground state is no-longer bounded and becomes disso-
ciative (and unbounded) at a large nuclear distance.39

The Rabi model, which explicitly ignores the presence
of the permanent dipole, explicitly breaks down when
electronic states have a large permanent dipole differ-
ence.41 Neglecting the permanent dipole, as commonly
done for most of the current molecular cavity QED
studies,6,105 can cause unphysical dips in the polari-
ton potentials,105 as demonstrated in Fig. 6c. The JC
model which assumes RWA, explicitly breaks down in
the recently emerged ultra-strong coupling regime,38,42

and also gives unphysical dips of the potential (Fig 6).
Thus, one need to use the most rigorous Hamiltonian to
describe the light-matter interactions and try to avoid
unnecessary approximations.

3.2 Self-consistent QED Approaches

We will briefly overview the recent work to integrate
the PF QED Hamiltonian (Eq. 55) into a vari-
ety of electronic structure methods to provide a self-
consistent solution to the ground and excited polari-
tonic states.156 Note that in the previous section for
the pQED approach we chose a basis for polaritons
that cannot change in a variational sense, while for
the self-consistent methods (Approach (II)), the basis

is variationally updated to minimize the energy of the
entire Hamiltonian. In this sense, the variational pro-
cedure may require a smaller number of overall elec-
tronic/photonic states than the pQED procedure; how-
ever, the scQED method requires knowledge of the low-
level basis of the electronic system (e.g., atomic orbitals,
plane waves, etc.) while the pQED method only re-
quires the resulting many-body state energies and tran-
sition dipoles (i.e., as solved by CIS, TD-DFT, EOM-
CC). In this way, the computational cost of the varia-
tional scheme becomes more complicated after adding
the additional DOFs of the photonic sub-system to the
low-level basis. In contrast to this, in the pQED pro-
cedure, the convergence of the basis becomes an impor-
tant consideration due to the lack of response of the
basis to the presence of the photon field. As is usually
done, we first approach this problem by way of mean-
field Hartree-Fock (HF) theory. Thus far, we are not
aware of any theoretical work on scQED method that
explicitly solves many molecules coupled to many cavity
modes beyond long wavelength approximation, such as
described by the ĤG

d·E Hamiltonian in Eq. 101. Since
this is highly relevant to the description of the actual
molecule-cavity coupling in most of the experimental set
up, future theoretical works should focus towards this
direction to achieve a more direct comparison with ex-
periments. Nevertheless, the on-going ab initio scQED
approaches layout the ground work toward that goal.

3.2.1 QED Hartree-Fock

Canonical HF theory attempts to describe a many-body
system’s ground state by the use of a single Slater deter-
minant, |ΦHF⟩, that yields an uncorrelated ground state.
This is usually the basis for so-called post-HF methods
that will be discussed later, such as the configuration in-
teraction (CI) and coupled cluster (CC) methods. For
the polaritonic system, one extends this ideology to in-
clude the photonic DOFs such that the uncorrelated
electrons and photons use the following direct product
state. However, to simplify the problem, many authors
have opted to use the coherent state basis148 for their
implementations of the scQED schemes100,157 for the
photonic DOFs, which alleviates some of the complex-
ity in notation as well as provides a useful interpretation
of the effects of the cavity on the ground state proper-
ties.

In order to illustrate the convenience of the coher-
ent states, following closely the notation of Ref. 100,
we first construct the HF ground state Ansatz for the
hybrid system via a tensor product of the bare molec-
ular HF ground state (which is a Slater determinant of
molecular orbitals who are themselves linear combina-
tions of atomic orbital basis ) and a Fock state of the
cavity mode as follows

|Φpl
0 ⟩ = |ΦHF⟩ ⊗

∑
n

cn
(â†)n√
n!

|0⟩, (117)
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where |0⟩ is the photon vacuum state of Ĥph (Eq. 42), a†

is the photon creation operator (see Eq. 42 and Eq. 43)
and cn is the expansion coefficients for the photon num-
ber states. The HF energy for the molecule-cavity hy-
brid system is then computed in the usual variational
way by using the |Φel+ph

0 ⟩ to sandwich Ĥpl (Eq. 106) as
follows

EQED−HF = ⟨Φel+ph
0 |Ĥpl|Φel+ph

0 ⟩, (118)

where the usual HF mean-field procedure is used to iter-
atively modify the electronic HF molecular orbitals and
photon coefficients, eventually reaching a variational so-
lution to the ground state energy of the molecule-cavity
hybrid system. In practice, one can first obtain the bare
molecular HF energy, EHF, outside the influence of the
cavity and variationally optimize the photonic expan-
sion coefficients of the partially evaluated PF Hamilto-
nian as follows100

⟨ΦHF|Ĥpl|ΦHF⟩ = EHF + ℏωc

(
â†â+

1

2

)
(119)

+

√
ωc

2
⟨λ · µ̂⟩HF · (â† + â) +

1

2
⟨(λ · µ̂)2⟩HF,

where ⟨· · · ⟩HF = ⟨ΦHF| · · · |ΦHF⟩ is the HF ground
state expectation value of the molecular subsystem,
and we have not used any photonic basis to evalu-
ate the expectation value for â† and â. Note that in
Eq 119, the light-matter interaction is carried by the
term ⟨λ·µ̂⟩HF ·(â†+â) resulting from the ĤPF in Eq. 55.

This partially diagonalized expectation value in
Eq. 119 can be fully diagonalized in the coherent
state basis148 defined by the unitary transforma-
tion93,100,102,157

ÛZ = eZâ†−Z∗â, (120)

which will shift the photonic creation and annihila-
tion operators for an arbitrary complex Z, such that
â† → â† + Z∗ and â → â + Z. This is in the same
spirit of the polarized Fock state idea in the previous
section (Sec 3.1), which is a polaron-like transform on
the photonic DOF. Choosing the particular Z as fol-
lows93,100,102,157

Z = −⟨λ · µ̂⟩HF√
2ωc

(121)

one can transform the Hamiltonian Ĥpl by unitary ro-

tation ÛZ , resulting in ĤZ
pl = ÛZĤplÛ

†
Z as follows

ĤZ
pl =Ĥel + ℏωc

(
â†â+

1

2

)
(122)

+

√
ωc

2
(λ · ∆µ̂)(â† + â) +

1

2
(λ · ∆µ̂)2,

where ∆µ̂ = µ̂ − ⟨µ̂⟩HF. Note that because ÛZ is a
unitary operator, it will not change the eigenvalue of
the problem.

With the transformed Hamiltonian in Eq. 122, one
can still evaluate its HF variational expectation value
as

⟨Ĥpl⟩Z = ⟨ΦHF|ÛZĤPFÛ
†
Z |Φ

HF⟩ (123)

= EHF +
1

2
⟨
(
λ · ∆µ̂

)2⟩HF + ωc

(
â†â+

1

2

)
and the light-matter coupling term explicitly vanishes
due to the fact that ⟨∆µ̂⟩HF = ⟨µ̂ − ⟨µ̂⟩HF⟩HF = 0.
Using this strategy, the light-matter coupling term ⟨λ ·
µ̂⟩HF · (â† + â) resulting from the ĤPF (in Eq. 119) no
longer explicitly shows up in Eq. 123, and the implicit
coupling between molecule and cavity is now carried
through

⟨(∆µ̂)2⟩HF = ⟨µ̂2⟩HF − ⟨µ̂⟩2HF, (124)

which can be intuitively understood as the dipole fluc-
tuations due to coupling to the cavity.

The variational expectation value in Eq. 123 suggests
that the eigenstates of this Hamiltonian are simply the
Fock states. However, one should not be confused by
its appearance as HF needs to be solved through many
iterations (in a self-consistent manner), and for each it-
eration, the shift Z needs to be re-evaluated, and a new
unitary transformation needs to be constructed, similar
to how the HF density matrix needs to be reconstructed
to progress the self-consistent cycle.

In the original Hamiltonian (Eq. 119), the eigenvec-
tors become the generalized coherent states themselves,

|Z, n⟩ = ÛZ |n⟩, (125)

where |n⟩ = (â†)n√
n!

|0⟩ is the cavity Fock state.

The HF equations can be solved through iterative di-
agonalization, and at each iteration the HF electronic
molecular orbitals are updated and are used to evaluate
the shift Z expressed in Eq. 121. The Fock matrix can
be written explicitly as

Fpq,nm = Fel
pq · δnm (126)

+
δnm

2

[ No∑
i

(λ · µpi)(λ · µiq) +

Nv∑
ν

(λ · µpν)(λ · µνq)

]
,

where {p, q} indicate all possible molecular orbitals, and
{i} and {ν} indicate strictly occupied, and strictly vir-
tual HF electronic orbitals, and F el

pq is the bare molec-
ular Fock matrix in the HF orbital basis. {n,m} are
the photonic Fock/number basis states. The Fock ma-
trix here, by construction, is similar to Eq. 123 and
does not contain the electron-photon interaction term,
which necessarily drops out in this picture since that
term mixes states with varied numbers of photon ba-
sis states while the DSE term connects only electronic
states. Noting that the solution to the bare molecular
Fock matrix is achieved if Fel

iν = 0, the QED-HF energy
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can be written as100

EQED−HF = EHF+
1

2
⟨(λ·∆µ̂)2⟩HF = EHF+

∑
iν

(λ·µiν)2,

(127)
which is then variationally minimized. More details on
the scQED-HF scheme in varying complexity can be
found in Refs. 100, 102, and 149.

3.2.2 QED Coupled Cluster Theory

An improvement over the mean-field and single-
reference methods can be systematically achieved by
increasing the number of reference states (configuration
Slater determinants). In electronic structure theory,
one can achieve these by building a correlated wave-
function theory starting from HF, such as a configura-
tion interaction (CI) approach that includes all possible
singly (S) excited Slater determinants (CIS),149 or one
that includes doubly (D) excited Slater determinants
(CISD), or CISD(T), etc. However, the most compu-
tationally feasible and accurate methods stem from the
coupled cluster (CC) approach. In particular, CCSD,
which includes up to two electronic excitation oper-
ators in principle but indirectly includes correlation
from higher-level excitations due to the location of the
excitation operators in an exponential function. As
such, this method has been shown to systematically
achieve more accurate results compared to the analo-
gous method in CI (eg, CISD method) and sometimes
even outperforms the CISDT methods.158–162 In this
case, it is the most appropriate choice to extend to the
QED formalism to correctly capture the correct elec-
tronic and electron-photon correlations that will result
from coupling to the cavity. Even though this method is
too expensive for most medium sized molecules, it pro-
vides a useful benchmark for other lower-order methods
(e.g., scQED-TD-DFT ).

Following closely with Refs. 100 and 163, the CC
ansatz for the ground state polaritonic wavefunction is

|ΨCC
0 ⟩ = eT̂ |Φpl

0 ⟩ = eT̂
[
|ΦHF⟩ ⊗ |0⟩Z

]
, (128)

where |Φpl
0 ⟩ is the polaritonic ground state calculated

at the uncorrelated HF level (see previous section) and
|ΦHF⟩ is the uncorrelated HF electronic ground state.
Here, |0⟩Z is the photon vacuum state in the rotated
coherent state representation with |0⟩Z = ÛZ |0⟩ (see
Eq. 120) at the variationally optimized coherent state
parameter Z after the HF self-consistent procedure. T̂
is the cluster operator (not to be confused with the ki-
netic energy operator T̂R or T̂r in Eq. 20). This clus-
ter operator involves a sum of electronic, photonic, and
mixed electron-photon excitations as follows

T̂ =
∑
α

tατ̂α +
∑
n

tnτ̂n +
∑
α̃,ñ

tα̃ñτ̂α̃ñ, (129)

where τ̂α represents creation and annihilation opera-
tors for an αth-order electronic excitation. For example,

τ̂νi = ĉ†ν ĉi excites an electron from an occupied orbital
i to an unoccupied orbital ν. Similarly, τ̂νυij = ĉ†ν ĉ

†
υ ĉiĉj

will excite two electrons i→ ν and j → υ, respectively.
The photonic excitation operator can be written in a
simple idempotent form163 as τ̂n = |n⟩⟨0| for a finite
number of Fock states163 {|n⟩} = {|0⟩, |1⟩, ..., |NF ⟩}.
The coupled excitation operator τ̂α̃ñ can be written,
for example, as ĉ†ν ĉi|n⟩⟨0| for a single electron excita-
tion coupled to an nth-level photonic excitation while
ĉ†ν ĉ

†
υ ĉaĉb|n⟩⟨0| will provide the double electron and nth-

level photonic excitations. Each of these excitation op-
erators and one for every choice of n up to the photon
level truncation NF with a unique cluster amplitude t.

A graphical representation of these partitioned and
coupled excitations can be found in Fig. 7a. The am-
plitudes tα, tn, and tα̃ñ can be solved by projection

(Eq. 130). This requires to evaluate ˆ̄HPF = e−T̂ ĤPFe
T̂ ,

which is the similarity-transformed Hamiltonian opera-
tor, where ĤPF is expressed in Eq. 104 and is usually
rotated to the coherent state basis (see Eq. 120). This
leads to the ground state energy as a solution to the
following set of equations,

⟨Φ0| ˆ̄H|Φ0⟩ = ECC, {LΓ} = ⟨Φ{Γ}| ˆ̄H|Φ0⟩ = 0, (130)

with |Φ{Γ}⟩ = τ̂{Γ}|Φ0⟩, where {Γ} is the set of possible

excitations in the cluster operator T̂ leading to the set
of projection equations {LΓ}. These projections lead to
the equations for the excitation amplitudes t{Γ} and are
usually solved in a self-consistent manner.

There are many different notations for the methods
developed by changing the highest level of excitation
for each term in the cluster operator. In this review, we
will use the notation whereby CCSD-n-jm, which im-
plies that the electronic DOFs are treated up to double
excitations in the cluster operator, the photonic excita-
tion is limited to n levels, and the mixed excitation is
set to j electronic and m photonic. As per usual CC
theory, the cutoff of excitation level leads to effects that
include yet higher excitations through the exponential
treatment of the cluster operator T̂ , thus effectively out-
performing similar methods like CI with the same ex-
citation level cutoff. However, due to the incredibly
high cost of the CC method in general, including more
than two Fock states has been a challenge even for small
molecular systems,157,164 and limited study has been
performed including up to 10 Fock states for a half-
filled four-site Hubbard model with direct comparison
to the full configuration interaction result.163 This will
have many negative implications on highly negatively-
detuned cavities or for purposes of multi-photon up-
conversion, where higher numbers of photons are re-
quired to extract the physics.

3.2.3 QED Equation of Motion Coupled Clus-
ter Theory

The excited states in the CC theory are generated most
naturally by the equation of motion (EOM) formal-
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ism, which is often referred to as the EOM-CC ap-
proach, whereby the excited wavefunctions are gener-
ated through the Jacobian matrix defined as the deriva-
tive of the projected equations (Eq. 130) with respect
to the cluster amplitudes tα as,158–162

J e/e
αβ = ⟨Φα| [ ˆ̄H, τ̂β ] |ΦHF⟩, (131)

where |Φα⟩ is is defined below Eq. 130 and |ΦHF⟩
is the exact ground state This leads to the following
non-Hermitian Hamiltonian for the bare electronic sys-
tem,165

ˆ̄H =

[
⟨ΦHF| ˆ̄H|ΦHF⟩ ⟨ΦHF| ˆ̄H|Φα⟩
⟨Φα| ˆ̄H|ΦHF⟩ ⟨Φα| ˆ̄H|Φβ⟩

]

= ECC1̂ +

[
0 ηT

0 A

]
,

(132)

where the explicit elements (as well as additional dis-
cussion) for the vector η and matrix A can be found in
Ref. 165. Extending the CC formalism to the coupled
electron-photon system, we have

A =

J e/e J e/ep J e/p

J ep/e J ep/ep J ep/p

J p/e J p/ep J p/p,

 (133)

where each block Jacobian matrix J (1)/(2) mixes vari-
ous DOFs through coupled excitations in the individual
or mixed sub-spaces. Note that J e/e is the same as
outside the cavity, and the rest of the Jacobian matrix
elements can be written similarly as follows

Jαn,βm = ⟨Φα, n| [ ˆ̄H, τ̂{Γ}] |ΦHF, 0⟩, (134)

where τ̂{Γ} can be either the electronic τ̂β , photonic τ̂m,
or mixed electronic-photonic τ̂β̃m̃ excitations. These
coupled equations are usually solved via iterative diag-
onalization for the amplitudes in the standard coupled-
cluater implementations. For more details on the exact
expressions for ground and excited polaritonic ampli-
tude equations, see Refs. 100, 166, and 163.

3.2.4 QED Density Functional Theory

In this section, we turn to a different and robust
approach to include explicit electron-photon correla-
tion, using density functional theory (DFT) approaches.
DFT167 is formally exact, up to the choice of the ex-
change correlation functional, which is currently not
known. To make it practical for realistic systems, mul-
titudes of approximate density functionals have been
developed with varying complexity that involves differ-
ent orders of derivatives on the electronic density in or-
der to capture long-range correlation. For the electron-
photon hybridized system, one must extend this ideol-
ogy to include correlations between the electronic and
photonic subsystems, which has only recently been stud-
ied.147,168 We will only give a general outline of this
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Figure 7: Implementations of QED-Electronic Struc-
ture Methods (a) Various approximations to the QED-
TD-DFT method (Eq. 142), generating the usual (but
generalized to many states) QED models such as Jaynes-
Cummings (JC), Rabi, and the rotating wave approximation
(RWA), as well as an approximation to the electronic sub-
system within the Tamm-Dancoff approximation (TDA). (b)
The coupled cluster (CC) method can be understood via
linear combinations of the excitation operators generated
by the exponential of the total cluster operator (Eq. 129).
Here, the CC excitations are visualized for the (left, black)
electronic and (right, red) photonic subsystems, where each
sub-system has an excitation operator (τ̂α, τ̂n) as well as a
shared coupled-excitation operator τ̂α̃ñ. Including infinite
excitations, one recovers the full configuration interaction
(FCI) limit. Panel (a) is adapted with permission from Ref.
93. Copyright 2021 American Institute of Physics. Panel
(b) is adapted with permission from Ref. 163. Copyright
2020 American Physical Society.

approach based on Ref. 147, which uses the optimized
effective potential (OEP) approach to generate a sim-
ple functional to include electron-photon exchange in-
teractions. However, other discussions related to the
recent advances of the scQED-DFT approach can be
found elsewhere in the literature.169,170

DFT uses the total density, n(r), as the main variable.
For cavity QED, the photon provides additional DOFs,
notably the photonic coordinate q̂c, which we will see
is hidden in new single-particle (SP) orbitals that can
be interpreted as corrections to the original SP states
due to the cavity. The DFT equations for the non-
interacting Kohn-Sham (KS) system can be written as[

− 1

2
∇2

i + vKS
sσ (r)

]
ϕiσ(r) = ϵKS

iσ ϕiσ(r), (135)

where i labels the non-interacting KS orbitals {ϕiσ}
with spin σ. The total density n(r) is computed as the
sum of the spin densities nσ =

∑
i ϕ

∗
iσϕiσ. The effective

KS potential is written as,

vKS
sσ (r) = vext(r) + vHxcσ(r) + vMxcσ(r), (136)

where vext is the usual external potential, vHxcσ is the
electron-electron exchange-correlation, and vMxcσ is the
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cavity-dependent exchange-correlation potential. Both
vHxcσ and vMxcσ contain unknown exchange-correlation
functionals. The ground state is a simple case where
the exchange-correlation energy can be written as,

Exc = Eee
xc + Exc, (137)

with corresponding potential,

vxcσ(r) =
δExc

δnσ(r)
. (138)

Here, Ref. 147 asserts an additional approximation
such that only the exchange energy is accounted for as
Exc ≈ Eee

x + Ex. In the ground state, only the second-
order exchange energy contributes to the total energy
(i.e., only the DSE term) The electron-photon exchange
energy Ex =

∑
σ

∑
i(Ex)iσ can be written purely as a

functional of the KS orbitals {ϕiσ} and two orbital shifts

{Φ
(1)
iσ } and {Φ

(2)
iσ } (to be interpreted as the KS orbital

response to the cavity field) as,

(Ex)iσ =
1

2

[√
ωc

2
⟨Φ(1)

iσ |λ · µ̂|ϕiσ⟩ +
1

2
⟨Φ(2)

iσ |λ · µ̂|ϕiσ⟩
]

+ c.c. (139)

where the “c.c.” term in above equation indicates to the
complex conjugate of all preceding terms. Here, the two
orbital shifts can be written in terms of the KS orbitals
themselves as follows

Φ
(1)
iσ (r) =

√
ωc

2

∞∑
j=Nσ+1

λ · µjiσϕjσ(r)

ϵiσ − ϵjσ − ωc

Φ
(2)
iσ (r) =

∞∑
j=Nσ+1

λ · µjiσϕjσ(r),

(140)

with a total of Nσ occupied KS orbitals of spin σ.
Using these expressions, one can take explicit func-

tional derivatives of Ex (see Eq. 138) with respect to

{ϕiσ}, {Φ
(1)
iσ }, and {Φ

(2)
iσ } to obtain the total OEP ex-

change potential vxσ(r) used in the DFT formulation
and further iterated to obtain the electronic density n(r)
under the influence of the cavity.

One possible observable that can be computed from
the photonic sub-space is the average photon number in
the ground state N̂ = ⟨â†â⟩ and can be written in terms

of the orbital shifts {Φ
(1)
iσ } as,147

N̂ = ⟨â†â⟩ =
∑
σ

Nσ∑
i=1

⟨Φ(1)
iσ |Φ(1)

iσ ⟩ +
(λ · µ)2

2ωc
. (141)

Here, the first term represents the one-photon wave-
functions that arise due to the quantum fluctuations
of the photon while the second term is the correction
due to the dipole self-energy contribution (after varia-
tional SCF procedure is performed).147 For the sake of
brevity, we refer the reader to Ref. 168 and Ref. 171 for
additional details and discussion on the scQED-DFT

formulation.169,169,172

3.2.5 QED Time-dependent Density Func-
tional Theory

Time-dependent DFT (TD-DFT) in the linear response
framework173 has been used ubiquitously over the last
couple decades to describe electronic excitations in all
manner of chemical systems, due to its computational
simplicity and feasibility for large systems from 100s
to 1000s of atoms in size.152,173–188 For the cavity
QED community, it is natural to extend this pow-
erful method to describe the coupled electron-photon
system. Recent work on developing a new scheme
to include the additional photonic DOFs are under-
way with promising results in a variety of molecular
systems.63,93,99,103,146,147,168–172,189–196 The Casida-like
generalized eigenvalue equation in the random phase ap-
proximation (RPA) can be recast in an increased dimen-
sional space to include the excitation and de-excitation
transition densities for both the electron and photon
subsystems including all terms in ĤPF (Eq. 55), result-
ing in the following93 generalized Casida equation

A + ∆ B + ∆ ℏg† ℏg̃†

B + ∆ A + ∆ ℏg† ℏg̃†

ℏg ℏg ℏω 0
ℏg̃ ℏg̃ 0 ℏω



X
Y
M
N



= ℏΩTD−DFT
PF


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1

 ,
(142)

where ℏΩTD−DFT
PF are the TD-DFT excitation energies

(for the ĤPF), X, Y and M, N are the electronic and
photonic transition density matrices, respectively, ∆
is the DSE term (Eq. 52), and ℏg is the light-matter
coupling term. The non-traditional matrix elements
are constructed as93 ∆ov,o′v′ = (µov · λ) (µo′v′ · λ),

ℏgo′v′ = ℏg̃o′v′ =
√

ℏωc

2 (µo′v′ · λ), ℏω = ℏωc1̂ph, where

A, B are the usual electronic TD-DFT matrix element
blocks173,180 for the particle-hole and hole-particle com-
ponents, respectively, and ωc and λ are the cavity fre-
quency and coupling strength, respectively. The indices
{o, o′}, {v, v′} correspond to occupied and unoccupied
Kohn-Sham orbitals, respectively.

There are two important things to note about this sc-
QED-TD-DFT procedure:93 (i) Only a single Fock state
was included in the off-diagonal coupling blocks ℏg.
However, additional photonic basis states become ex-
tremely important at large coupling strengths,163 which
is not included in this sc-QED-TD-DFT method. This
procedure can be easily extended to necessarily test the
convergence of the polaritonic properties on the basis
size of the photonic system. (ii) This work does not
inherently rely on the use of the ground state scQED-
DFT method discussed previously and can be instead
coupled with any molecular ground state as computed
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by any exchange-correlation functional and further used
in the canonical TD-DFT blocks A and B. In this way,
the ground state orbitals (i.e., Kohn-Sham basis states)
themselves do not directly respond to the presence of
the cavity through self-consistent iteration but instead
only interact with the cavity through the iterative diag-
onalization cycles that provide the excited states (i.e.,
Lanczos/Davidson153,197,198 algorithms).

Various approximations can be achieved by setting
different blocks of Eq. 142 to zero. The usual Tamm-
Dancoff Approximation (TDA) can be achieved by set-
ting B = 0, while other QED Hamiltonians (in their
many-state generalizations) can also achieved. For ex-
ample, setting g̃ = 0 is the generalized RWA, while
also setting the DSE term to zero (∆ = 0), one arrives
at an analogue of the JC Hamiltonian. These various
choices have been extensively discussed in Ref. 93, and
is schematically depicted in Fig. 7b.

Other similar forms of the TD-DFT and CIS equa-
tions have been derived for the scQED scheme, such as
those presented in Ref. 99 and Ref. 149, respectively,
and both approaches yield similar results. In principle,
in all methods discussed until now, an arbitrary num-
ber of photonic basis states can be included in order
to converge the photonic contribution with little-to-no
increase in overall expense due to the relative simplic-
ity of the photonic subsystem compared to the elec-
tronic one. Although, more work is needed to test the
results against an increasing number of photonic ba-
sis states when using these QED approaches, whereas
most of the work usually only includes the vacuum |0⟩
and |1⟩ Fock/number states. In the previous section on
wavefunction-based methods and specifically with the
QED coupled cluster methods, more work has been done
to test such convergence. However, due to the method
itself, the expense becomes too large to include more
than a couple photonic states yet still does not capture
the complete physics in comparison to a full configura-
tion interaction (FCI) approach for model systems.163

3.3 Recent Results in the Calculation of
Ab initio Polariton States

3.3.1 Polaritonic Excited States

Historically, the development of electronic structure
methods started in the ground state with HF, DFT, CC,
etc. methods and then moved to the excited state with
TD-HF, TD-DFT, EOM-CC, etc. The recent develop-
ment of scQED methods took a similar path, but the
production of ground and excited state methods largely
overlapped due to the already available electronic struc-
ture theory for solving complex many-body Hamiltoni-
ans. In the following, we will review some recent stud-
ies using scQED as well as pQED schemes, but we will
begin with our discussion for the excited state. This
is more akin to the original context of quantum optics
decades ago, where coupling a cavity to a single atomic
transition (ground to excited electronic excitation) was

prevalent, as illustrated in the simple features of the
Jaynes-Cummings Hamiltonian (Fig. 1c).

Fig. 8 presents a few examples that illustrate the
modifications of the excited state electronic structure
(or potential energy surfaces) when forming molecu-
lar exciton-polaritons. Fig. 8a is one of the first ex-
amples100 of scQED calculations using the equation-of-
motion coupled cluster (EOM-CC) approach (scQED-
EOM-CC) to examine the polariton potential energy
curve Ea(R) (see Eq. 108) of H2 (left panel) and HF
(right panel) when coupled inside a cavity, with the field
polarization along the bond axis of each molecule and
with a coupling strength λ = 0.05 a.u. The upper (UP)
and lower (LP) polaritons are labeled to indicate the lo-
cation of the main Rabi splitting caused by the |g, 1⟩ and
|e, 0⟩ hybridization (as explained by simple JC model in
Eq. 6), but the presence of the many-electronic-states
and additional many photon-dressed adiabatic states
make the UP/LP picture (by the JC model) overly sim-
plified. In Fig. 8a, the blue solid lines indicate the exci-
tonic character, the white solid lines indicate photonic
character, and the red dotted lines indicate the original
electronic states outside the cavity. Using the photon-
dressed electronic states, one can manipulate and tune
the excited state potential energy surfaces to mediate
additional transitions or eliminate them. For H2, the
cavity frequency is close to the first singlet electronic
transition (at the Franck-Condon region of the nuclear
DOF). The modifications to the excited state PES cur-
vatures can be seen by the induced localization of the
UP state, which possesses a minimum near the Frank-
Condon point while the original molecular PES (red
dashed line) has a purely dissociative character. For
the HF molecule coupled to the cavity (right panel), the
cavity frequency is near resonant to the ground to the
second excited electronic transition. Similar features
of the polariton potential can be obtained when this
polar molecule (which possesses a permanent ground
state dipole) is coupled to the cavity. The authors of
that work100 thus concluded that the permanent dipole
does not induce additional interesting effects, which is
accurate for this particular system. However, as a re-
minder of what was discussed previously (Eq. 5), not
only the ground state permanent dipole contributes to
the light-matter interactions, all excited state perma-
nent and transition dipoles will, in principle, contribute
interesting effects. We should note that the energetic
alignment of electronic states plays an important role in
photophysical properties of polaritons. The commonly
used language of “upper polariton” and “lower polari-
ton” could potentially be misleading if the system has
many electronic states nearby in energy, as was the case
for the H2 and HF examples presented in this panel.

Fig. 8b presents another recent example of scQED
simulations99 for obtaining polariton potential energy
surfaces Ea(R), using the scQED-TD-DFT level of the-
ory to investigate a formaldehyde molecule coupled to
the cavity. Outside the cavity (left), an avoided cross-
ing can be found along the C-O bond stretching coordi-
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Figure 8: Ab Initio Electronic-Photonic Structure for Polaritonic Excited States (a) scQED-EOM-CC scheme
exploring H2 and HF dissociation potential energy surfaces (PESs) inside a cavity. For each molecule, the cavity frequency is
in resonance with the first bright excitation at the equilibrium geometries with polarization along the bond axis with coupling
strength λ = 0.05 a.u. The polaritonic levels are shown in blue, while the bare molecular levels are shown in red. The
lowest-energy levels participating in electron-photonic hybridization are labeled as LP and UP in each panel. (b) PESs are
shown the formaldehyde C-O bond stretch (left) outside the cavity and inside two cavities of frequencies ωc = 8.71 (middle
panel) and ωc=8.16 eV (right panel), respectively, for a coupling strength λ = 0.04 a.u. and polarization along the C-O
bond axis. (c)-(d) Hybridization diagrams and (e) absorption spectra for the toluene molecule. (c) Small coupling λ = 0.01
a.u. leads to an effective two-level system, while (d) at larger coupling λ = 0.10 a.u. higher electronic excited states become
important. (e) The absorption spectra at small cavity loss rate κ = 10 meV for multiple coupling strengths λ = (i) 0.01, (ii)
0.10, and (iii) 0.43 a.u. and at large coupling strength λ = 0.43 a.u. for varied cavity loss rates κ = (iii) 10, (iv) 100, and (v)
320 meV. The colorbar indicates the electronic and photonic character. 36,000 external cavity modes were usedd to model the
cavity loss in this effective single-mode cavity. Panel (a) is adapted with permission from Ref. 100. Copyright 2020 American
Physical Society. Panel (b) is adapted with permission from Ref. 99. Copyright 2020 American Institute of Physics. Panels
(c)-(e) are Adapted with permission from Ref. 193. Copyright 2021 American Institute of Physics.

nate near to RCO ≈ 1.35Å. The shading of the curves
in this panel indicates the magnitude of the electronic
transition dipole moment between the ground and ex-
cited state.99 At a large cavity frequency ωc = 8.71
eV, the avoided crossing can be reduced by the cou-
plings between the photon-dressed ground state |g, 1⟩
and the higher-energy excited state with zero photons.
At a slightly smaller cavity frequency ωc = 8.16 eV, the
original potential energy minimum near RCO = 1.5Å
(for the bare molecule) can now be completely removed
through the light-matter potential curvature hybridiza-
tion, tilting the polariton potential all the way back to
a global minimum energy located at the Frank-Condon
point of RCO ≈ 1.2Å. This work,99 demonstrates that
by forming polaritons, one can in principle manipulate
photo-excited reactions via modification of the excited
state pathways and curvatures.10,17,63

Fig. 8c presents the first few polariton states gener-
ated from coupling a toluene molecule (under the cavity-

free equilibrium nuclear geometry) to a single mode
cavity. In particular, the first two electronic excited
state states (orange) and one photon-dressed ground
state (blue) are shown. At a weak coupling of λ =
0.01 a.u. and a cavity frequency that is in resonance
with the first electronic excitation, the electronic and
photonic DOF strongly mix and generate the polariton
states (purple), resulting in the usual UP and LP polari-
ton states. The second excited states, due to their off-
resonant frequency, is not explicitly involved into polari-
ton formation under this particular coupling strength.
For a larger coupling strength λ = 0.10 a.u. (Fig. 8d),
the Rabi splitting ΩR (red arrow) becomes large enough
to mix the UP with the second excited electronic state,
thereby forcing the change in terminology to now in-
clude three polaritons: the LP, the upper lower polari-
ton (ULP) and the upper upper polariton (UUP). In
this case, the LP and ULP are strongly coupled through
the light-matter interaction, while the ULP and UUP
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are interacting via the derivative couplings from the
bare electronic interactions and DSE couplings medi-
ated by the cavity. This will lead to interesting dynam-
ical interplay between all DOFs; this was done explicitly
in Ref. 193 using a simplified pQED Hamiltonian based
on the data in Fig. 8e to perform model polariton dy-
namics to elucidate the dynamical effects of a multi-level
system.

Fig. 8e presents the results of absorption of the same
toluene-cavity hybrid system. In particular, the work
in Ref. 193 uses scQED simulations to directly examine
the condition to achieve a strong coupling by incorpo-
rating cavity loss into the analysis. This is done through
broadening of the cavity coupling strength across a mul-
titude of cavity modes localized at the primary cavity
frequency ωc following a Lorentzian broadening of var-
ied width κ (i.e., loss rate). The coupling strength λ
(Eq. 105) is distributed across the multitude of modes
in the spectral function (i.e., a Lorentzian) such that

λc(ωk;ωc, κ) = λ
∆ω

2π

κ

(ωk − ωc)2 + (κ
2 )2

, (143)

where the original coupling strength λ has been broad-
ened by the Lorentzian function, with ∆ω = ωk+1 − ωk

as the discrete mode frequency separation, ωc as the
central mode frequency, and ωk as the frequency of
the kth mode. In this work,193 36,000 cavity modes
were used to mediate the cavity loss effects for an ef-
fective single-mode cavity. Recall that λ is a general-
ization of the commonly used Jaynes-Cummings cou-
pling strength gc and can be related as gc =

√
ωc

2 λµeg

in Eq. 3. This approach to cavity loss is, in princi-
ple, equivalent to adding a photonic bath to the cavity
mode q̂c (see Eq. 185 in Sec. 4.7). The loss rate κ can
be directly measured from experiments by the width of
the absorption peak assuming that the spectral width
is dominated by the photonic loss, which is a good ap-
proximation for most realistic experimental configura-
tions. In Fig. 8e, the absorption spectra (see details in
Sec. 3.3.2) was computed99 using the effective polari-
tonic dipole by mixing the electronic dipoles according
to expansion coefficients of the adiabatic electronic and
Fock basis states µpol

0α =
∑Nel

j cαj µ
el
0j , where N is the

number of included electronic states.99

Recall that the strong coupling in cavity QED is com-
monly defined as gc ≫ κ, where gc is the matter-cavity
coupling strength and κ is the cavity loss (if matter de-
excitation rate is much smaller than the cavity loss).
In this example (Fig. 8e), the absorption spectra (cal-
culated using Eq. 147) is shown for different cases of
cavity strength λ and cavity loss rate κ, which will turn
the light-matter couplings from the weak coupling (no
Rabi splitting) to the strong coupling regimes (has Rabi
splittings). The excitonic character (orange) and the
photonic character (blue) are depicted in the color bar
in Fig. 8e. For each sub-panel, (i) at a low coupling
strength (λ = 0.01 a.u.) and cavity loss κ = 10 meV,
the Rabi splitting is not visible in the spectral reso-

lution, and the feature is dominated by the excitonic
character; (ii) at a larger coupling strength (λ = 0.1
a.u.) and the same κ = 10 meV, the Rabi splitting is
clearly visible; however, the second excited state is not
affected by the presence of the cavity due to the large
energetic separation (detuning) between the UP state
and the second electronic excited state. Now, the main
polaritonic absorption features are mixed between elec-
tronic and photonic contributions. (iii) at a very large
coupling strengths (λ = 0.43 a.u.), the UP polariton
state now strongly mixed with the second excited elec-
tronic state and forms the ULP and the UUP polariton
states.99 Further, one can fix the coupling strength λ
and gradually increase the loss rate κ. (iv) For the case
of the very strong coupling λ = 0.43 a.u., the cavity loss
rate is increased from κ = 10 meV to κ = 100 meV, ef-
fectively increasing the spectral signature of the cavity
modes centered at ωc. Here, the character of the absorp-
tion is dominated by the photonic DOF (blue color),
and the width of each main feature in the absorption
becomes much broader compared to the case in (iii).
(v) At an even larger cavity loss rate κ = 320 meV,
the identities of the LP and ULP start to disappear,
leaving only a single broad peak centered at ωc with
dominating photonic character. This effectively returns
the system back to the weak coupling regime, due to
the light-matter coupling strength is now much smaller
than cavity loss. The second excited electronic state is
nearly unperturbed now due to the decoupling between
the cavity modes and the electronic states. Note that
the absorption spectra is arbitrarily scaled to showcase
the features and may not reflect the exact nature of the
spectra.

3.3.2 Computing Polariton Properties

Now we move to more examples of using the sc-
QED approaches to analyze excited state properties
of molecular exciton-polaritons. There are many
quantities in the electronic structure community in
determining the character of an excitation, such
as natural transition orbitals,199–201 transition den-
sity,99,152,200,201 difference density,100,157,200,201 electro-
static surfaces/charges,,202,203 etc. In principle, they
can all be generalized for polaritons and be able to used
to characterize the nature of polaritons. Our main focus
here is on the transition density,99,152,189,200,201 which
is the most straightforward quantity that can be obtain
from electronic structure packages. The one-electron
polaritonic transition density between the ground and
ath polaritonic states can be written as

ρM0a(r) =

∫
dqc

∫
dr2...drNe

ρ0a(qc, r, r2, ...rNe
), (144)

where qc is the photonic coordinate of the cavity and rj
is the jth electronic coordinate of Ne electrons.99 Here,
ρ̂0a = |Ψa⟩⟨Ψ0| is the usual transition density operator
from ground to the ath excited polaritonic state. One
can also show that this one-particle polaritonic transi-
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Figure 9: Ab initio Electronic Density and Transition Density Analysis (a) Transition density (top) outside and
(bottom) inside a cavity with coupling strength strength λ = 0.986 a.u. of graphene flakes (or quantum dots) with three types
of localized defects: (left) CHB , (middle) CB-CB , and (right) CB-VN . (b) (i) Absorption spectra of formaldehyde at varying
coupling strengths λ = 0.0, 0.02, 0.04, and 0.06 a.u. for cavity frequency ωc = 7.92 eV. (ii) (Left) Ground state total density
and (right) bare molecular transition density (λ = 0.0 a.u.) (iii-iv) Matter-projected transition density for the (left) lower and
(right) upper polaritons at λ = (iii) 0.02 and (iv) 0.06 a.u. (c) Ground state density difference function for a charge-transfer
benzene derivative with amino- and nitro- groups in the para position (see panel d). the cavity frequency was set to ωc =
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with permission from Ref. 99. Copyright 2020 American Institute of Physics. Panels (c)-(d) are Adapted with permission
from Ref. 100. Copyright 2020 American Physical Society.

tion density can be written in terms of the bare one-
particle electronic transition densities according to the
expansion coefficients Ca

αm (i.e., after diagonalizing the
pQED Hamiltonian in Eq. 112 with the adiabatic-Fock
basis defined in Eq. 111) as

ρM0a(r) =

N∑
αβ

NF∑
n

C0
αnC

a
βn · ξMαβ(r), (145)

where ξMαβ(r) = ψα(r)ψ∗
β(r) is the bare one-particle elec-

tronic transition density between adiabatic states ψα

and ψβ and Ca
βn is the βnth expansion coefficient for

the ath polariton (see Eq. 111), and N and NF in-
dicates the total number of adiabatic states and Fock
states, respectively. Further, ψα(r;R) = ⟨r|ψα(R)⟩ are
the many-electron adiabatic states outside the cavity.
Note that since the Pauli-Fierz Hamiltonian (Eq. 104)
is purely real, the coefficients {Ca

αm, C
b
βn} are also real.

In the matter-projected polaritonic transition density
ρM0a, the photonic DOFs were traced out, leaving only
linear combinations of electronic matrix elements of the
same photon number (i.e., n = m). Using these sim-

ple expressions, one can easily compute any polaritonic
observables from the pQED scheme, relying on elec-
tronic quantities from widely available electronic struc-
ture codes as well as benefiting from the simplicity of
the photonic sub-system.

Further, Eq. 145 can be generalized to the following
structure to include any one-particle electronic or pho-
tonic observables

⟨a|Âel ⊗ B̂ph|b⟩ =

N∑
αβ

NF∑
mn

Ca
αmC

b
βn⟨α,m|Âel ⊗ B̂ph|β, n⟩

=

N∑
αβ

NF∑
mn

Ca
αmC

b
βn · ⟨α|Âel|β⟩ · ⟨m|B̂ph|n⟩, (146)

where Âel and B̂ph are any one-body operators in the
electronic and photonic sub-spaces, respectively. Here,
Âel or B̂ph may be the dipole, excitation number, to-
tal density, transition density, etc. operators from the
respective sub-spaces. For example, one can compute
the exciton-polariton absorption spectra, A(E), shown
in Fig. 8e and Fig. 9. Here, the polaritonic transi-
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tion dipole matrix element µpl
0a can be computed using

Eq. 146 as µ̂pl = Âel⊗ B̂ph = µ̂el⊗ 1̂ph where 1̂ph is the
identity operator in the photonic sub-space. With this
expression, the absorption spectra can be written as

A(E) =
∑
a

2

3
(Ea − E0) · |µpl

0a|2 · δ(E − Ea). (147)

Note that the delta-function is usually broadened with
a normalized, finite-width Gaussian or Lorentzian func-
tion to account for excitonic, photonic, and/or environ-
mental relaxation/broadening processes present in re-
alistic experimental conditions. In principle, another
term should be added to account for the photonic part
of the absorption/emission, which is proportional to
Âel ⊗ B̂ph ∼ 1̂el ⊗ q̂c = 1̂el ⊗ (â† + â). However,
the relative magnitude of the electronic and photonic
contributions in experiment is extremely reliant on the
experimental setup (e.g., cavity loss, direction of the
probe etc.). Other works have used different quantities
to explore the cross-correlation of various observables
for the spectroscopic analysis of molecular systems in
cavities.169 In experiment, usually the photonic contri-
bution to the absorption and emission will dominate
the intensity of the spectrum in Fabry–Pérot-type cavi-
ties.204,205 however, for theoretical calculations, the ex-
citonic absorption spectra expressed here and in other
works93,99,192,193 is better-suited to understand the ef-
fects of the cavity on the electronic sub-system and gives
more direct insight into the local reactivity and elec-
tronic reorganization in the molecule upon excitation.
It is also important to recall that most of these reported
results are in a single-mode cavity and, in principle, only
represent the θ = 0 special incident angle in a FP cavity
(see Fig. 4 and Sec. 2.6).

Fig. 9a-b presents the polariton transition density
when coupling matter to an optical cavity.189 The
molecular transition density indicates the electron and
hole overlap in real space and provides information re-
garding the localization of the exciton and on molecules,
which may provide useful insights into possible reactive
bonding sites upon photo-activation.152,200,201 Fig. 9a
showcases the polaritonic ground-to-excited transition
density189 (see Eq. 145) for three defected hexagonal
boron nitride quantum dots: (left) carbon substitution
at a boron site CHB, (middle) carbon substitutions at
meta-boron sites CB-CB, and (right) carbon substitu-
tion and adjacent nitrogen vacancy CB-VN. Outside of
the cavity (top row), these defects each have a unique
low-lying exciton of varied localization character. The
nitrogen vacancy CB-VN (right) presents the most local-
ized features in the transition density (where the elec-
tron and hole are strongly overlapped only in this re-
gion near the defect). When coupling the system in-
side a cavity (bottom row), the transition density for
all species becomes mostly delocalized. This delocal-
ization in the transition density facilitates an increase
in polaritonic dipole moment and hence the increase in
the lowest absorption peak in all species. Here, the tun-

ability over the bright, low-lying transition in defected
boron nitride quantum dots has been achieved through
cavity QED.

Fig. 9b, presents the lowest bright excitation in
formaldehyde when it is coupled to a cavity. In panel
(i), when varying coupling strengths λ = 0.0, 0.02, 0.04,
and 0.06 a.u., one can clearly see an an increasing Rabi
splitting ΩR in the absorption spectra. The transition
density of the bare molecular system is shown in panel
(ii) right figure while the ground state density is shown
in panel (ii), left figure. Inside the cavity, for a weak
coupling (λ = 0.02 a.u.), the transition density from the
ground state to the upper polariton (iii, right) and to
the lower polariton state (iii, left) indicate a significant
modification of the excitation character compared to the
transition density for the bare molecule. Similarly, at
increased coupling strength (λ = 0.06 a.u.). the transi-
tion density continues to change, although, the ground
to the lower polariton transition (iv, left) is significantly
modified compared to the case in (iii, left).

Another analysis technique common to electronic
structure theory is the density difference function, which
is capable to illustrate the change of the electron dis-
tribution in a molecule upon excitation. More specif-
ically, these can be defined in two ways: (I) the dif-
ference between the density of polaritonic state |Ψa⟩ in-
side and an analogous electronic state outside the cavity
|ψα⟩ ⊗ |n⟩ (usually the ground polariton state and the
ground electronic states) and (II) the difference between
the density of one polaritonic state |Ψa⟩ and another
state |Ψb⟩ (usually for ground and an excited polari-
ton state). Fig. 9c describes the density difference of
type (I) for the ground state while Fig. 9d for the same
molecular shows the difference density of type (II) for
the polaritonic excited state and ground state.100,206

In Fig. 9c, the ground state density difference
(∆ρ(z) = ρcav00 (z) − ρnocav00 (z)) is presented where the
cavity (with coupling λ = 0.05 a.u.) is placed in
resonance with the lowest-lying charge transfer state
(from NH2 group to the NO2 group, see panel d for
molecule) and showcases a modulation of the ground
state indicating charge displacement, where blue and
red isosurfaces represent charge accumulations and de-
pletions, respectively. A charge migration of -0.005
|e|, induced by the cavity, is seen from the acceptor
(NO2) to the nitrogen atom of the donor (NO2), ef-
fectively reducing the ground state dipole from 6.87 D
to 6.77 D. This reduction in dipole moment is thought
to by a direct result of the cavity inducing charge mi-
gration in order to reduce the variation in the dipole
∆µ̂ (see discussion near Eq. 124).147 Here, ∆ρ(z) =∫∞
−∞ dx

∫∞
−∞ dy

∫ z

−∞ dz′∆ρ(x, y, z′). Here, the authors
have directly shown that the ground state density is
modified by mixing with excited electronic states and
adopting their character via coupling through the cav-
ity. Similarly, in Fig. 9d, the ground/excited state
density difference can be plotted (∆ρ(z) = ρE.S.(z) −
ρG.S.(z)) to showcase the effects of the cavity on the
exited state character with respect to the polaritonic
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ground state. Here, the charge displacement is seen
moving from the donor (NO2) to the acceptor (NH2)
species with a magnitude of -0.4 |e|. The upper (red)
and lower polaritons (blue) observe different amounts
of charge displacement, but the sum of the two (dashed
black) nearly reproduce the original bare molecular
ground/excited density difference (green). In this anal-
ysis, one can investigate the distribution of charge be-
tween the ground and excited states inside and outside
of the cavity for effects on the electrical current in ma-
terials and for reactivity in the excited state and will
have direct application to the design of photo-voltaic
technologies.100

3.3.3 Comparison between Self-consistent and
Parameterized QED Methods

Now that we have seen the types of studies that have
been performed mainly using the scQED procedure, we
will circle back to an explicit comparison between the
pQED and scQED methods and showcase some results
obtained on similar systems as already described. Fur-
ther, the use of either pQED and scQED schemes should
give the same result in the infinite basis limit. However,
as we shall see in this section, each approach has its
own strengths and limitations that need to be consid-
ered when applying to a specific calculation.

In Fig. 10a, the absorption spectra for the benzene
molecule is shown in analogy to the toluene molecule
discussed in Fig. 8e, with cavity loss introduced in the
same way (see discussion near Eq. 143). For these
choices of coupling strength Fig. 10a(i-iii) and cavity
loss in Fig. 10a(iii-v) parameters, the pQED-TD-DFT
and scQED-TD-DFT methods provide nearly identical
numerical results. It should be noted that this system is
simpler than the toluene example since no nearby elec-
tronic excited states are present to mix with the char-
acter of the polaritons using these choices of parame-
ters.193 Additionally, the coupling strength and cavity
loss rates are very small in this example. Importantly,
note that one would not have a priori knowledge on how
many electronic or Fock states are required to obtain
this pQED-TD-DFT Hamiltonian, and as mentioned
before the number of of basis electronic and photonic
states should be treated as convergence parameters.

Fig. 10b showcases an investigation of the formalde-
hyde excited state PESs (as discussed previously in
Fig. 8b). This comparison leads to some devia-
tions between the pQED-TD-DFT and scQED-TD-
DFT schemes. Here, however, the pQED Hamiltonian
was treated with a multi-state generalization of Jaynes-
Cummings model Hamiltonian (Eq. 83) while the sc-
QED was treated with Pauli-Fierz QED Hamiltonian
(Eq. 106). As such, the deviation might due to the use
of different QED Hamiltonians.

Fig. 10c presents the results of dissociation of the
MgH+ molecule coupled to the cavity.149 The compar-
ison between the scQED-CIS approach (at the level of
configuration interaction singles) and pQED-CIS are

performed, where a three-state Pauli-Fierz model was
used including the |g, 0⟩, |g, 1⟩, and |e, 0⟩ states for the
pQED-CIS (where the energies, permanent dipoles, and
single transition dipole were taken from bare CIS calcu-
lations). In other words, only one electronically excited
state and one excited Fock state were used. This is the
“minimum basis” for constructing the pQED Hamilto-
nian and one should enlarge the basis for achieving more
accurate results at large light-matter coupling strengths.
The agreement between the pQED-CIS and scQED-CIS
are not perfect, and the deviations can be seen near the
minima of the upper polariton (blue). Even with the
minimal basis, the pQED Hamiltonian performs well
for these parameters, and the deviation may be due to
the simplicity of the excited state manifold (i.e., mini-
mal basis) or rather the exclusion of dipole coupling and
dipole self-energy contributions from higher-energy ex-
citations (not included in the pQED simulation) for the
choice of coupling strength used (see discussion regard-
ing Fig. 5). In Fig. 10d, the bond length of the MgH+

molecule (coupled inside an cavity) was fixed while the
light-matter coupling strength was increased. Here, at
low coupling strengths λ < 0.01 a.u., the pQED-CIS
Hamiltonian perfectly matches the scQED-CIS results.
At large couplings λ > 0.01 a.u., the pQED-CIS de-
viates from the scQED-CIS results, indicating that the
minimal basis of |g, 0⟩, |g, 1⟩, and |e, 0⟩ is no longer good
enough to converge the interaction and/or DSE terms
that require additional electronic or photonic states.

In the final example of the comparison between the
scQED and the pQED schemes, an explicit test using
either two (pink triangles) or three (purple squares)
electronic states in the pQED approach compared to
the variational scQED approach (blue circles), both at
the Jaynes-Cummings level, was performed on the ethy-
lene molecule,93 as shown in Fig. 10e. Here, both the
pQED as well as the scQED schemes used the general-
ized Jaynes-Cummings Hamiltonian (see Sec. 3.2). At
low light-matter coupling strength λ < 0.05 a.u., the
two- and three-electronic-state pQED-TD-DFT and the
scQED-TD-DFT result in the same energies. At larger
light-matter coupling strength λ > 0.05 a.u., none of the
three methods are in agreement, indicating that more
basis states are required to converge the pQED results.
In this work, only the number of electronic states was
explored, with only a single excited Fock state included
in the basis. In this case, only the |0⟩ and |1⟩ states were
used. In the supporting information of this work,93

the number of electronic states was further tested for
large values of coupling. Here, the authors used up
to 1000 electronic states, and neither the energies or
dipoles were fully converged at this size of basis. There
are a couple potential causes for this deviation.93 First,
at this size of electronic basis, the number of included
Fock states becomes extremely important for the con-
vergence. For example, the |ej , n⟩ basis state could be
very close in energy to some nearby |ek, n±1⟩ state, and
recalling the block structure of Eq. 112, the interaction
are then be non-zero if the transition dipole between
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Figure 10: Comparison of Parameterized QED Hamiltonians with Self-consistent Solutions (a) Absorption
spectra of benzene for a variety of weak coupling strengths, λ = (i) 0.001, (ii) 0.002, and (iii) 0.003 a.u., and for a variety
of cavity loss rates, κ = 1, 4, and 8 meV. The cavity frequency is is resonance with the first bright transition of the bare
benzene molecule. The pQED Hamiltonian is shown in red, while the scQED solution is shown in blue. (b) Born-Oppenheimer
polaritonic potential energy surfaces for formaldehyde projected along the C-O bond stretch. The two cavity frequencies used
were ωc = (left) 8.71 and (right) 8.16 eV with coupling strength λ = 0.04 a.u. The cavity polarization is along the C-O bond
vector. The pQED result is shown in green, while the scQED result is shown in black. (c)-(d) The MgH+ molecule was placed
into the cavity and the (c) Mg-H bond length RMgH at fixed coupling strength λ = 0.0125 a.u. and (d) coupling strength λ
at fixed bond length RMgH = 2.2 Åwere scanned and compared between the pQED (dashed lines) and scQED (dotted lines)
schemes. (e) The pQED scheme was tested on the ethylene molecular using a 2- (pink) and 3-state (purple) electronic basis
and compared to the scQED-JC model scanning over coupling strength λ at the Frank-Condon geometry. Panel (a) is adapted
with permission from Ref. 193. Copyright 2021 American Institute of Physics. Panel (b) is adapted with permission from Ref.
99. Copyright 2021 American Institute of Physics. Panels (c)-(d) are adapted with permission from Ref. 149. Copyright 2022
American Institute of Physics. Panel (e) is reproduced with permission from Ref. 93. Copyright 2021 American Institute of
Physics.

electronic states |ej⟩ and |ek⟩ is non-zero, which is un-
deniably hard to predict for an arbitrary system (see
examples in Fig. 5). Additionally, the effects of the DSE
terms that connect electronic basis states of the same
photon number via the square of the dipole matrix (see
Eq. 112) can mediate an interaction between a high-
energy electronic state with a low-lying state, making
the convergence of the number of electronic and Fock
states of supreme importance. Careful convergence of
the electronic and Fock states must be done carefully
and simultaneously.

In principle, both pQED and scQED will generate
identical results under the complete basis limit. Com-
pared to scQED, the pQED scheme is much simpler
in the sense that it does not require additional re-
development of electronic structure theory for the QED
Hamiltonian as well as the simplicity that comes with
a non-self-consistent solution. With the above available
examples, one can see that if the light matter coupling

strength is high and more electronic states are needed
for a fully converged pQED calculation, then in princi-
ple, one needs to fully converge these excited electronic
states first before doing the pQED simulation. One im-
portant consideration, of many, is the fulfillment of the
TRK sum rule in Eq. 68, which is a fundamental re-
quirement by exact quantum mechanics. However, due
to the use of approximate electronic structure methods,
the TRK sum rule becomes method-dependent. For
example, TD-DFT satisfies this rule but TD-DFT in
the Tamm-Dancoff approximation (TDA) does not (see
Sec. 3.2.5).207 Thus the accuracy of the excited state
dipole matrix elements (such as those shown in Fig. 5)
might violate this rule for some electronic structure
methods and become less accurate for high-lying ex-
cited states, which are a necessary input into the pQED
method at large coupling strengths and will eventually
lead to a less accurate description of polariton states.
On the other hand, one can start with a reasonably
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sized basis, construct excited configurations from a ref-
erence trial electronic-photonic wavefunction, and solve
only the first few polaritonic states, as needed, directly
by using scQED approach with high accuracy combined
wither iterative diagonalization techniques.151–153 De-
spite the enormous recent progress in both scQED and
pQED schemes, what is generally missing is a consistent
and fair comparison of both approaches and assessment
of the strengths/limitations of each method under dif-
ferent scenarios. These consistent benchmarks will be
one of the urgent tasks for the electronic structure com-
munity.

3.3.4 Modification of the Polaritonic Ground
States

We now move to another recent direction, where
the ground state of a molecular system can be sig-
nificantly modified by coupling to a cavity photon
mode with a photon frequency beyond the infrared
(IR).100,102,147,157,163,168,172,191 From the technical per-
spective of electronic structure theory, this appears to
be a simpler problem because ground states (even for
polaritons) are often easier to obtain compared to ex-
cited states. Meanwhile, an intuitive understanding of
cavity modification of the molecular ground state is
not available when using simple quantum optics mod-
els. In fact, the JC model predicts that the ground
state is simply |g, 0⟩ irrespective of the cavity coupling
strength λ or the cavity photon frequency ωc and is
therefore completely decoupled from the manifold of ex-
cited adiabatic-Fock basis states. Of course, the JC
model Hamiltonian is known to explicitly break down,
especially for large coupling strengths (see Fig. 3 and
Fig. 6). Therefore, the investigations focused on the
ground state properties of a polaritonic system necessar-
ily belong to a regime beyond the JC model. This failure
of the JC model also indicates that the cavity modi-
fication to the molecular ground state operates in the
ultra-strong coupling regime (USC) or beyond. Further,
this is also an interesting direction where new chemical
reactivity could occur in the ground state of the hybrid
system, which is not well-understood and may require
one to “re-learn” molecular orbital theory in the pres-
ence of the cavity.102

In this case, there is no semblance of the Rabi split-
ting (Eq. 6), since the electronic state in question (i.e.,
the ground state) is far away in energy from the cav-
ity frequency (e.g., ∼ 1-10 eV) as we will see in the
following examples. However, the dipole self-energy,
which couples electronic states through dipole interac-
tions mediated by the cavity, will still have a drastic ef-
fect, especially at large coupling strengths. To be clear,
the cavity frequency in these examples is far away from
those of the vibrational strong coupling (VSC) cases,
which have cavity frequencies on the order of ∼0.1 eV
(see Sec. 5 for more details of VSC) lying in the IR
regime. Additionally, the difficulties of such calculations
are significantly simplified because they only require a

ground state electronic-photonic structure method for
the scQED scheme (e.g., QED-HF, QED-DFT, QED-
CC, etc., see Sec. 3.2) and are therefore computation-
ally simpler than those previously discussed simula-
tions in this section that required the explicit calcu-
lation of excited polaritonic states. In contrast, per-
forming pQED calculations require the calculation of
excited states, since these ground state modification re-
viewed in this section are induced by off-resonance cou-
plings between the molecular ground state and other
electronic states (through DSE) or other light-matter
dressed states (through light-matter coupling term). Of
course, the pQED Hamiltonian will provide the same
results as the scQED approaches in the infinite basis
limit.

Fig. 11 presents several recent works on modifying
the ground state properties when coupling molecules
to a high frequency cavity (in the electronic excitation
range). Fig. 11a examines the effects of modulating
inter-molecular interactions by coupling an H2 dimer
to a cavity with frequency ωc = 12.7 eV and coupling
strength λ = 0.10 a.u.101 Using the coupled cluster
(CC) and full configuration interaction (FCI) methods,
as well as their scQED variants, QED-CC and QED-
FCI,100,101 it was determined that the presence of the
cavity drastically modulates the inter-molecular inter-
actions between the two H2 molecules. Depending on
the cavity polarization direction with respect to the hy-
drogen dimers, the inter-molecular potential well can be
increased by ∼ 0.75 meV (for êz polarization along the
inter-molecular axis) or decreased by ∼ 1.0 meV (for
êx polarization along the intra-molecular bond axis),
respectively. These weak inter-molecular interactions,
on the order of meV, are ubiquitous in chemistry. As
such, a drastic change in the intermolecular potential
may give new and interesting effects in many of these
processes. In this simple example, the well was modified
by up to 100 % compared to outside of the cavity.

Along the same vein, Fig. 11b also uses the scQED-
based approach to investigate the ground state proton
transfer reaction in the symmetric malonaldehyde (top)
and asymmetric aminopropenal (bottom) molecules.103

Here, the cavity frequency was set to 3.0 eV with light-
matter coupling λ = 0.10 a.u. The ground state en-
ergy at the transition and product (for the asymmet-
ric molecule) geometries, both of which are relative
to the reactant energy, were computed using a variety
of scQED methods, including QED-CC (blue), QED-
HF (red), and QED-DFT (green). The reaction pro-
file outside the cavity (solid lines) is also calculated
using the corresponding level of the theory. Inside
the cavity (dashed lines), for both molecules (top and
bottom panels) and for all levels of theory, the reac-
tion barrier height is increased by nearly ∼1 kcal/mol
(top panel) and ∼0.85 kcal/mol (bottom panel) when
coupling molecule with the cavity. For the amino-
propenal molecule (bottom panel) the product was only
changed by ∼0.1 kcal/mol for the QED-CC method and
∼1.0 kcal/mol for QED-DFT and QED-HF. This evi-
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Figure 11: Ab Initio Electronic-Photonic Structure for the Polaritonic Ground State (a) Polariton-induced
modifications to non-covalent ground-state (i.e., van der Waals) interactions between a pair of H2 molecules is shown, including
interaction with either an X- (circle) or Z- (triangle) polarized cavity at either the QED-CCSD-1-21 (red) or QED-FCI (black)
levels of theory. The single-mode cavity frequency is ωc = 12.7 eV with coupling strength λ = 0.1, and dotted lines showcase
the out-of-cavity results. (b) The reaction barrier of the proton-transfer in malonaldehyde is modulated through interactions
with the cavity (X-polarization) at the QED-CCSD-1-21 (blue), QED-DFT (green) and QED-HF (red), where the solid lines
correspond to outside the cavity. The cavity frequency is ωc = 3 eV with coupling strength λ = 0.1. (c) Ground state density
differences ∆ρqq = ρq − ρq of (i,iii) neutral NaF and (ii,iv) anionic (NaF)− with the cavity polarization ê (i,ii) parallel and
(iii,iv) perpendicular to the Na-F bond (black arrows). Here ρq indicates the polaritonic ground state total density with
q ∈ {0,−1} total charge. The colormap indicates that red (blue) is increased (decreased) electron density. (d) Molecular
orbitals of the methyl chloride CH3Cl and ammonia NH3 molecules (center, at transition state of the SN2 reaction) and its two
main components at varying light-matter coupling strengths λ = 0.0, 0.1, and 0.2 a.u. The molecular orbitals are chosen as
they comprise the majority of combined. The percent contribution is shown for each choice of light-matter coupling. system
based on the amount of contribution to the combined system. (e) The HOMO and LUMO+1 molecular orbitals are shown
for the formaldehyde molecule (bottom) inside and (top) outside of cavity. The light-matter coupling is set to λ = 0.1 a.u.
The symmetry of the electron orbitals are shown to the right side of each orbital. Panel (a) is adapted with permission from
Ref. 101. Copyright 2021 American Institute of Physics. Panel (b) is reproduced with permission from Ref. 103. Copyright
2022 American Chemical Society. Panel (c) is adapted with permission from Ref. 157. Copyright 2021 American Institute of
Physics. Panel (d) is adapted from Ref. 102. Panel (e) is adapted with permission from Ref. 149. Copyright 2022 American
Institute of Physics.

dences the fact that coupling between the cavity and
the excited electronic states may have drastic conse-
quences for the ground-state potential energy landscape
for large coupling strengths. This is in contrast to
the case of vibrational strong coupling between light
and matter, where the classical potential barrier on
the ground polaritonic potential energy surface is not
changed.69 More discussions related to VSC can be
found in Sec. 5.2.

In another work,157 the authors use the scQED-HF
and the scQED-CCSD-1-21 approaches (see Sec. 3.2) to
explore the effects of adding (i.e., electron affinity) or
removing (i.e., ionization potential) from sodium halide
molecules coupled to the cavity157 Specifically, Fig. 11c

shows the ground state electronic density difference, de-
fined as ∆ρqq = ρplq − ρelq where q is the total charge in

the system, ρplq is the ground state density inside the

cavity, and ρelq is the ground state density of the bare
molecular system. As shown in Fig. 11c, the bond of
the NaF molecule can be destabilized upon insertion
into the cavity and further destabilized if the molecular
system is negatively charged. The results of the ground
state difference density function evaluated in the plane
of the molecule are shown in Fig. 11c with the coupling
strength λ = 0.05 a.u. and with the cavity polarization
along the Na-F bond vector (panels i and ii) and perpen-
dicular to the bond vector (panels iii and iv). Further,
panels (i) and (iii) are for a neutral system, and panels

39



(ii) and (iv) are for a negatively charged system. The
red color indicates an increase in the electron density
upon coupling to the cavity, whereas the blue color in-
dicates a decrease in electron density. For the neutral
systems, when setting the cavity polarization along the
bond (panel i) or perpendicular to the bond (panel iii),
it was found that there is a relatively small change of
the electron density, except at positions very close to
the nuclei. In both cases, the electronic density differ-
ences showcase a p-orbital-like increase in density with
the same polarization as the cavity. In panel (i), there
is a small reduction in electron density (blue color) be-
tween the Na and F nuclei, indicating a reduction in
bonding character. It is clear from the electronic re-
distribution in both polarization directions (i,iii) that
the stability and bonding character of the NaF system
is significantly modified, which will lead to changes in
the ground state dissociation of these molecules.157

Fig. 11c (ii) and (iv) present the same type of analysis
but for a negatively charged species (NaF)−. Here, the
electronic redistribution is more drastic, and at larger
distances from the atomic centers, there is a less no-
ticeable impact from the polarization direction. In both
cases of the cavity polarizations, a large addition of elec-
tron density can be seen below the Na atomic center,
more prominent in the case of perpendicular polariza-
tion (iv). This indicates that the cavity is able to signif-
icantly redistribute this additional electron from three
places: (I) close to the nuclei, (II) between the Na-F
bond, and (III) far-away (light blue > 2Å from Na nu-
cleus). In all four cases, the bonding character is ex-
pected to be reduced while a major electron density re-
organization is seen for the negatively charged molecule.
This work demonstrated the capacity of the scQED-CC
method for investigating the electron affinity and ion-
ization potentials of various small systems and provided
simple physical explanations of the cavity-induced ef-
fects through the ground state density difference func-
tion.

Further, the authors157 also explain effects of the cav-
ity coupling on the ground state of molecule, prior to
perform ab initio polaritonic calculations. In this sc-
QED framework, the authors used the coherent state
basis148,208–210 (defined earlier in Sec. 3.2) which allows
one to observe the size of the variance in the dipole with
respect to the electronic ground state which is (∆µ̂)2

(see discussion around Eq. 124). The size of the vari-
ance will give direct insight into the magnitude of the
cavity effects on the ground state and can be calcu-
lated for the bare molecular system outside the cavity.
This was computed for the sodium-halide species in the
present example, which predicted the larger effects for
the anionic (negatively charged) species that was later
observed to be accurate after performing the explicit
scQED procedure.149,157

In Ref. 102, the reactivity of a generic SN2 reac-
tion between methyl chloride CH3Cl and ammonia NH3

(which forms methylamine and hydrogen chloride) was
explored from the viewpoint of molecular orbital (MO)

theory. Here, the authors102 portray a new ideology
of MO theory inside the cavity, referred to as cavity
MO theory. Using the self-consistently updated ground
state MOs from a scQED-HF scheme, the authors make
predictions regarding the thermodynamic driving force
of the reaction based on the strongly participating MOs
between reactive substituents. Fig. 11d (ii) presents the
main results of the work, where the transition state ge-
ometry of the reaction is shown along with the dominant
MO, HOMO−5, with strongly overlapping orbitals be-
tween all participating species for coupling strengths λ
= 0.0, 0.1, and 0.2 a.u. (left to right within each panel).

Fig. 11d (i,iii) show the projections onto the sub-
stituents’ MOs that largely contribute to the bonding
process at each light-matter coupling strength. Notably,
for the full molecule shown in (ii), the bonding of the ni-
trogen to the carbon gradually decreases with increasing
coupling strength λ, effectively due to the localization
of the nitrogen’s lone pair to the nitrogen atom. Here,
the presence of the cavity influences the relative con-
tributions of the substituent MOs as shown for the (i)
ammonia and (iii) methyl chloride. For the ammonia
species, the contribution of the anti-bonding lone pair
localized to the nitrogen is increased with increasing
coupling strength λ. This is the main driving force for
the reduction in the nitrogen-carbon bond at the tran-
sition state geometry found in Fig. 11d (ii). The other
effect found in (ii) is the weak conversion of the carbon-
chloride bonding character to anti-bonding character
with increasing coupling strength. This is exemplified in
(iii) which showcases two main contributing projected
orbitals, HOMO-2 and HOMO-5, of the methyl chloride
sub-system. HOMO-2 posses the bonding character be-
tween the chloride while HOMO-5 provides the anti-
bonding character. As the coupling strength increases,
the bonding orbital contribution decreases from 32% to
15% while the anti-bonding orbital increases from 5% to
9%. This accounts for the reduction in bonding charac-
ter found in (ii). This work102 exemplifies that molec-
ular orbital theory still applies but needs to be further
understood in the presence of a cavity. Through self-
consistent electronic-photonic structure theory (i.e., sc-
QED ground state methods), one can more easily un-
derstand the response of the MOs due to the presence
of the cavity. Performing a similar calculation via the
pQED scheme, on the other hand, is not trivial for the
analysis of the ground state MOs. In principle, it should
be possible to reformulate Eq. 112 in the basis of MOs
rather than electronically correlated excited Slater de-
terminant states, carefully accounting for the occupa-
tion numbers of photon-dressed MOs.

A similar work performed an analysis of the ground
state of formaldehyde with scQED-HF.149 Fig. 11e
shows the (left) HOMO and (right) LUMO+1 for the
molecule coupled inside the cavity (bottom) and for the
bare molecule outside the cavity (top). The cavity fre-
quency was set to ωc = 10.4 eV with coupling strength
λ = 0.1 a.u and polarization ê = ŷ + ẑ (see Fig. 11e for
Cartesian axes). Here, the authors make note of the loss
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in the symmetry of the MOs resulting from the influ-
ence of the cavity. The overall symmetry of the molecule
changed from C2v to Cs after orbital relaxations under
influence from the cavity. The bare molecular system
contains a HOMO with 2B2 symmetry and LUMO+1
with 6A1 symmetry. Upon coupling to the cavity, the
MOs become distorted (similar to what was seen in the
previous example Fig. 11d) and take on new types of
symmetry with labels 7A’ and 8A’, respectively. The
LUMO+1 state has the most visually obvious effects
in that the p-orbital on the oxygen (left-most atom)
rotates to becomes parallel with the polarization direc-
tion, while the other part of the orbital changes shape
entirely with the dominating part of the orbital lying
in-line with the oxygen p-orbital rather than symmet-
rically split according to the symmetry of the nuclei.
These modifications to the frontier orbitals showcase
the drastic effects the cavity may have on local reac-
tivity of the molecules whereby the molecular orbitals
exchange character and lead to various changes to the
local electrostatic potential and atomic charges. In the
same work, the configuration interaction (CI) theory is
also developed for the sc-QED method, which is conve-
nient for incorporating electronic-photonic correlations
for calculations of the excited states.

In conclusion of this section, examining the response
of the ground and excited electronic structure to the
presence of molecule-cavity coupling is of extreme im-
portance for all theoretical applications. The significant
changes to the properties can elucidate a new and pow-
erful method for manipulating chemical reactions in the
ground state and tuning the local excitonic character
of excited states to use in photo-chemistry and opto-
electronic property modification. Further, the use of ei-
ther pQED and scQED schemes will give the same result
in the infinite basis limit; however, each have strength
and limitations that need to be considered when ap-
plying to a specific calculation. For all of the current
theoretical work, it seems that only Ĥpl in Eq. 106 is
used, which is limited to the single cavity mode situa-
tion. Connecting with the majority of the experiments
conducted with many molecules coupled to many cavity
modes inside a Fabry–Pérot cavity, one needs to con-

sider the Hamiltonian Ĥ
[N ]
PF in Eq. 101. Developing ab

initio polaritonic methods for such a Hamiltonian could
be a very attractive direction for the electronic structure
community in future.

In the following section, we move to a photo-physical
discussion on how polaritonic dynamics in the excited
state can be performed with models as well as with ab
initio information in order to demonstrate specific ex-
amples of modified excited state processes achievable in
both experimental and theoretical realizations.

4 Polariton Photochemistry and Pho-
todynamics

The emerging field of polariton photochemistry has seen
tremendous growth over the past decade due to numer-
ous experimental3,20,30,31,211 and theoretical advance-
ments.5,10,13,61,95,212–214 The theoretical and computa-
tional investigations of polaritonic photochemistry thus
far underpin the great potential for using cavities to
control photochemical reactivity. This section aims to
highlight these advancements and offer insight into the
various mechanisms that light-matter coupling provides
for modifying photochemistry.

There are two overall regimes of light-matter coupling
which offer different mechanisms for changing chemical
reactivity: the weak coupling and the strong coupling
regimes. The primary characteristic that differentiates
these two regimes is whether the light-matter coupling
strength gc is smaller than (weak coupling) or larger
than (strong coupling) the various loss rates of the sys-
tem.24–27 In the weak coupling regime, the primary
mechanism for modifying chemistry is through an en-
hancement of the overall loss rate of the system, known
as the Purcell effect.26,215,216 In this regime, there is
a limited modification of the potential energy surfaces
which limits the amount of control one has over modify-
ing chemical reactions. On the other hand, in the strong
coupling regime, significant changes to the potential en-
ergy surfaces can be observed and are adjustable based
on fundamental physical characteristics such as the cav-
ity frequency ωc and the light-matter coupling strength
gc. These potential energy surface modifications, along
with other factors such as the initial photonic state, the
rate of cavity loss, and the presence of the dark state
manifold, offer several mechanisms for theorists and ex-
perimentalists to use to control chemical reactivity in
the strong coupling regime.

Recent experiments in polariton photochemistry have
demonstrated some promising results of using molecule-
cavity coupling to change photochemical reactivity. One
of the first experiments to demonstrate a change of pho-
tochemical reactivity in the strong coupling regime is
shown in Fig. 12a, adapted from Ref. 3. In this work,
the rates of a photo-isomerization reaction (panel (i)
between spiropyran and mecrocyanine via a photoex-
cited ring cleavage) were modified by resonant coupling
between the molecules to a Fabry–Pérot cavity, with a
reported Rabi splitting of ΩR = 700 meV. In Fig. 12a-
(ii), the proposed mechanism of this modification3 was
an increase in the decay rate of the pathway (1) (radia-
tive relaxation from the lower polariton state) relative
to the pathway (2) (excited state isomerization) caused
by the formation of the lower polariton. This mecha-
nism led to the slowdown of the isomerization reaction
inside the cavity at resonance (Fig. 12a-(iv)) but was
not present in the off-resonant case (Fig. 12a-(v)).

Another experiment shown in Fig. 12b, adapted from
Ref. 30, demonstrates a suppression of photobleaching
rate of J-aggregates of TDBC dye molecules with de-
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Figure 12: Recent Polariton Photochemistry experiments. (a) (i) Schematic of the ring-opening reaction of spiropyran
(left) to merocyanine (right) under ultra-violet (UV) irradiation while the reverse reaction occurs under visible (VIS) irradiation
along with thermal energy. (ii,iii) Schematic of the potential energy surfaces (ii) inside and (iii) outside the cavity with red
arrows showcasing the possible reaction/emission pathways and black arrows indicating possible electronic or polaritonic
excitations. (ii) The dashed red arrows exemplify the modified pathways due to the cavity. (iv,v) The time-dependent
concentration of the merocyanine (MC) product (plotted as ln(1-[MC]t[MC]−1

∞ )) inside (green) and outside (red) for a cavity
that is (iv) resonant and (v) off-resonant with the MC electronic excitation (in the UV). (b) (i) Schematic of J-aggregates
of TDBC dye molecules coupled to a plasmonic nanoantennae cavity. The dye molecules can undergo photobleaching which
involves reactions with atmospheric oxygen (blue) and creation of reactive oxygen species. (ii) The photobleaching rate of the
dye molecules outside the cavity (uncoupled) and inside the cavity (coupled) for different Rabi splittings. (c) (i) Schematic
of a plasmonic cavity which contains a periodic repetition (i.e., a lattice) of aluminum (Al) strips on a TiO2 film on a glass
substrate. The decomposition rate of the molecule methyl orange is examined outside and inside the plasmonic Al lattice. (ii)
The lattice period of the Al strips is varied and a ratio of the rate inside the cavity ⟨k⟩ to the bare “b” rate outside the cavity kb
is obtained. (d) (i) Potential energy diagram of an isomerization reaction of the DCS molecule from its planar excited state to
its twisted ICT excited state (TICS) whereby the photonic state of the cavity (center black line) mediates transitions between
various vibronic states (thin horizontal lines) of the electronically excited isomer states (left and right, thick curved lines)
via the formation of upper (UP) and lower (LP) polaritonic states (center, dark orange). (ii-iv) Photoluminescence intensity
(PL) as a function of emission energy for various concentrations of DCS: (ii) 0.8%, (iii) 1.0%, and (iv) 1.2%. The vertical
dashed green lines indicate the energy of the product TICS species at 2.37 eV. (e) (i) Energy diagram of the tautomerization
reaction of a single phthalocyanine molecule showing various reaction pathways including non-radiative singlet decay (knr),
singlet fluorescence (kf), singlet to triplet intersystem crossing (kISC), and triplet decay (kt). The singlet fluorescent decay
rates are increased inside the cavity. (ii) Single molecule fluorescence lifetime distributions outside the cavity (blue) and inside
the cavity (green). Panel (a) is adapted from Ref. 3 with permission. Copyright 2012 WILEY-VCH Verlag GmbH and Co.
KGaA, Weinheim. Panel (b) is adapted from Ref. 30 under the CC BY-NC license. Panel (c) is adapted from Ref. 211 with
permission. Copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim. Panel (d) is adapted from Ref. 31 under
the CC BY-NC license. Panel (e) is adapted from Ref. 116 with permission. Copyright 2021 American Chemical Society.

pendence on the Rabi splitting as shown in panel b(ii).
This work utilized plasmonic nanoantennae (panel (i))
to produce a strong cavity field that couples to the dye
molecules and generates a large Rabi splitting between
the polariton states. These polariton states are able to
decay the excited population to the ground state more
quickly before the excited population can transfer to
the triplet state and undergo photobleaching, which re-
duces the photobleaching rate inside the cavity (panel

(ii)) thus increasing the stability of the dye inside the
cavity. This effect of this mechanism is enhanced for
larger Rabi splittings.

In Fig. 12c, a plasmonic array cavity (panel (i)) was
used to modify the photochemistry of the photocat-
alytic decomposition of methyl orange from Ref. 211.
The methyl orange can become reactive when the ad-
jacent TiO2 undergoes UV irradiation and ionizes the
methyl orange, which can then react with other radicals
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in solution and break down. The coupling of this path-
way to the plasmonic array allows for the formation of
waveguide-plasmon polaritons which can increase visi-
ble light absorption and decrease radiative damping,211

which can alter the reaction rate. In order to control the
decomposition reaction using a cavity, the array nature
of the cavity (in panel c(i)) allows the lattice period,
and thus the cavity frequency, to be adjusted. This
ability to selectively modify the lattice period was used
in panel c(ii) to demonstrate the frequency-dependent
modification of a photocatalytic decomposition reaction
rate.30 In addition to adjusting the cavity frequency
and coupling strength, the pump excitation frequency
can also be adjusted to selectively control reaction out-
comes as demonstrated by the work shown in Fig. 12d,
adapted from Ref. 31. When the cavity-coupled sys-
tem (i) was pumped at the frequency of the lower po-
lariton instead of at the bare reactant frequency, the
photoluminescence spectra was dominated entirely by
the TICS product (ii-iv) instead of a mixture of re-
actant and product signals. This selectivity based on
pumping frequency was further enhanced by increasing
the molecule concentration and thus the light-matter
coupling strength (ii-iv). Photochemistry has also been
shown to be modifiable in the weak coupling regime in
the work of Fig. 12e, adapted from Ref. 116. The de-
crease in excitation lifetime (ii) due to the Purcell effect
caused a reduction of population transfer from the sin-
glet to triplet excited state (i) which ultimately reduced
the rate of excited state tautomerization.

While the aforementioned photochemical experiments
have demonstrated some promise for cavity-controlled
photochemistry, recent theoretical investigations on the
topic have shown a wider array of ways to control photo-
chemistry with polaritons and have elucidated the possi-
ble mechanisms behind this control. The following sec-
tion details some of these theoretical works in polariton
photochemistry. Section 4.1 outlines various methods
for performing non-adiabatic polariton photochemical
simulations. Section 4.2 describes how light-matter hy-
bridization allows for control over photochemical pro-
cesses. Section 4.3 overviews the results of realistic ab
initio simulations of cavity-coupled photo-isomerization
reactions. Section 4.4 outlines the various ways that
light-matter coupling can control charge transfer reac-
tions. Section 4.5 details the influence of cavity-induced
conical intersections on photochemical reactions. Sec-
tion 4.6 introduces how the initial state of the photonic
mode can be manipulated to influence photochemical
dynamics. Lastly, Section 4.7 goes over the impact of
cavity loss on photochemical reactivity.

We also recommend the recent review articles in po-
lariton photochemistry. Ref. 2 and Ref. 29 provide
the general ideas of using polariton as a new platform
for controlling chemistry. Ref. 10, Ref. 24 and Ref.
17 provide general discussions on the potential surface
hybridization due to molecule-cavity interactions. Ref.
217 summarizes the theoretical challenges for simulat-
ing polariton quantum dynamics in a molecule-cavity

hybrid system.

4.1 Non-adiabatic Polariton Photo-
chemical Simulations

Here, we provide a short discussion of dynamical sim-
ulations of polaritons chemistry. The essential task is
trying to solve the time-dependent Schrödinger equation
(TDSE)

iℏ
∂

∂t
|Ψ(t)⟩ = ĤPF|Ψ(t)⟩, (148)

where |Ψ(t)⟩ is the total quantum states of the
electronic-nuclear-photonic quantum state of the
molecule-cavity hybrid systems, whose time-evolution
is governed by the QED Hamiltonian ĤPF (Eq. 56).
For more than a few nuclear DOF, solving the TDSE
exactly is prohibitively expensive. Depending on the
complexity of the molecular system, one may perform
the dynamics exactly as dictated by the TDSE or resort
to various approximations, such as mixed quantum-
classical (MQC) approaches, semi-classical approaches,
various approximate master equation approaches (e.g.,
Lindblad, Redfield, etc.) and approximate wavefunc-
tion approaches.

In the following discussion, we will brief introduce two
popular mixed quantum-classical approaches as well as
an exact method for solving polariton quantum dynam-
ics.

4.1.1 Exact Polaritonic Quantum Dynamics

We begin by briefly discussing how to solve Eq. 4.1 ex-
actly, thus giving an exact solution to the polaritonic
quantum dynamics. There are, in principle, many pos-
sible strategies for exact quantum dynamics propaga-
tion, and we only outline one of the most commonly
used strategies based on the Born-Huang expansion.

We describe the total wavefunction of the electron-
photon-nuclear DOFs using the Born-Huang expan-
sion218 using the polaritonic basis as,

|Φ⟩ =
∑
ξa

χa(Rξ) |Rξ⟩ ⊗ |Ψa(Rξ)⟩, (149)

where χαn(Rξ) = ⟨Rξ| ⊗ ⟨Ψa(Rξ)|Φ⟩. Here {|Ψa(R)⟩}
are the polaritonic state at R which can be written in
expressed in the adiabatic-Fock state representation as
|Ψa(R)⟩ =

∑
α,n C

a
α,n|ψα(Rξ)⟩, n⟩ and are obtained by

diagonalizing Ĥpl (see Eqn. 111). Within this repre-
sentation, the total light-matter Hamiltonian is written
as
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T̂R + Ĥpl = −
∑

a,b,ξ,ξ′

∑
j

ℏ2

2Mj

[
⟨Rξ|∇2

j |Rξ′⟩δab

+ 2⟨Rξ|⟨Ψa|∇j |Ψb⟩ · ∇j |Rξ′⟩ + ⟨Ψa|∇2
j |Ψb⟩

]
× |Rξ,Ψa⟩⟨Rξ′ ,Ψb| +

∑
a,ξ

Ea(Rξ)|Rξ,Ψa⟩⟨Rξ,Ψa|

(150)

where we have used the simplified notation |Ψa⟩ ≡
|Ψa(Rξ)⟩. We refer the reader to Ref 219 and Ref. 220
for evaluating the nuclear kinetic energy (first term) and
the derivative coupling term (second term) using spec-
tral functions or the DVR basis.

Upon diagonalization of this Hamiltonian ĤPF =
T̂R + Ĥpl, the electronic-nuclear-photonic eigenstates
can be obtained as,

ĤPF|Ej⟩ = Ej |Ej⟩. (151)

The electronic-nuclear-photonic wavefunction is then
evolved simply as

|Φ(t)⟩ =
∑
j

cje
− i

ℏEjt|Ej⟩ (152)

where Ej is the jth eigenvalue and cj is the projection
of initial total wavefunction onto the jth eigenstate |Ej⟩

cj = ⟨Ej |Ψ(t = 0)⟩, (153)

where |Ψ(t = 0)⟩ is the initial condition and can be
arbitrarily defined in each case. Additional details on
the exact propagation can be found in Refs. 96, 221,
and 85.

Here, we have depicted only one possible way of
performing exact polaritonic dynamics; however, many
other exact (or almost exact) quantum dynamics ap-
proaches exist that can be utilized. In the follow-
ing we will mention a few of these approaches: The
Multi-configuration time-dependent Hartree (MCTDH)
scheme has been recently used to simulate polariton
photochemistry,222 conical intersections in cavity223,223

and vibrational polariton dynamics.155,224,225 The ex-
act factorization (XF) approach has only recently been
developed and has been to used to simulate polariton
photochemistry giving rise to novel interpretations of
the wavefunction and the exact potential energy sur-
face depending on the choice of factorization of the elec-
tronic, photonic, and nuclear DOFs.11,226 The hierar-
chical equation of motion (HEOM) approach has been
used to simulate conical intersection inside cavity227

and vibrational polariton chemistry.228 Additionally, ab
initio multiple spawning (AIMS),229,230 Ehrenfest mul-
tiple cloning (EMC),231 and their variants232–234 could
also be adapted for polaritonic dynamics to give nearly
exact results.

4.1.2 Ehrenfest Dynamics

Ehrenfest (EH) dynamics is a mixed quantum-classical
(MQC) approach for propagating the coupled electron-
photon-nuclear dynamics.231,235,236 Within this ap-
proach, the nuclear DOFs are evolved classically while
the electronic and photonic DOFs are treated quantum
mechanically. Below, we define the wavefunction for the
quantum sub-system (which includes the electrons and
the photons)

|Ψ(t)⟩ =
∑
a

ca(t)|Ψa(R(t))⟩ =
∑
α,n

cαn(t)|ψα(R(t))⟩ ⊗ |n⟩,

(154)

where {|Ψa(R(t))⟩} are the polaritonic basis states
that are eigenstates of Ĥpl = ĤPF − T̂R (see
Eqn. 111) and {|ψα⟩ ⊗ |n⟩} are the adiabatic elec-
tronic and Fock/number photonic basis states. The
time-dependent electronic-photonic wavefunction |Ψ(t)⟩
is evolved by solving the following time-dependent
Schrödinger equation (TDSE)

iℏ
∂

∂t
|Ψ(t)⟩ = Ĥpl|Ψ(t)⟩, (155)

which leads to the following set of differential equations
for the expansion coefficients in the polaritonic basis as,

ċa(t) = − iEaca(t)

−
∑
b

dR(t)

dt
· ⟨Ψa(R(t))|∇R|Ψb(R(t))⟩ cb(t).

(156)

Thus, using the ab-initio QED approach outlined in
Sec. 3, one can obtain |Ψa(R(t))⟩ and directly solve
Eq. 156 using the propagation of R(t). Note that a
similar expression can be obtained for the cαn(t) when
using the adiabatic-Fock representation instead. Note
that the derivative couplings in this basis (adiabatic-
Fock) are sparse since ⟨n|∇R|m⟩ = 0, as the pho-
tonic Fock states have no dependence on the nuclear
coordinates unlike the electronic adiabatic ones dαβ ≡
⟨ψα(R(t))|∇R|ψβ(R(t))⟩ ̸= 0 (see Eq. 23). This is not
true for the generalized coherent state (GCS)148 or po-
larized Fock state (PFS)41 bases, which intrinsically en-
tangle the electronic and photonic DOFs. Note here
that the adiabatic polaritonic states can be obtained
through any of the excited state scQED schemes dis-
cussed in Sec. 3.2 while the adiabatic electronic and
photonic basis can be computed from bare electronic
structure calculations dressed with a photonic basis via
the pQED scheme (see Sec. 3.1).

The force needed to solve Hamilton’s equations of mo-
tion for the nuclei can be written as,

F(t) = −
∑
ab

c∗a(t)cb(t)⟨Ψa(R(t))|∇RĤpl|Ψb(R(t))⟩

(157)
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where the matrix elements ⟨Ψa(R(t))|∇RĤpl|Ψb(R(t))⟩
are written as,

⟨Ψa(R(t))|∇RĤpl|Ψb(R(t))⟩ (158)

= ∇REa(R(t)) · δab
+ ∆Eba(R(t)) · ⟨Ψa(R(t))|∇R|Ψb(R(t))⟩ · (1 − δab)

where ∆Eba(R(t)) = Eb(R(t)) − Ea(R(t)). Therefore,
the forces F(t) are described by a weighted average
over the population times the diagonal nuclear gra-
dients on the polaritonic PESs ∇REa(R(t)) as well
as the coherence-weighted off-diagonal gradient terms
∆Eba(R(t)) · ⟨Ψa(R(t))|∇R|Ψb(R(t))⟩. A similar ex-
pression can be obtained when using the adiabatic-
Fock basis. The nuclear motion can be solved using
a velocity-verlet algorithm.219,237

The nuclear DOFs can be initialized by sampling its
thermal distribution on the ground state potential en-
ergy surface around the Frank-Condon region at a given
temperature either by use of BO molecular dynamics
(BOMD) using randomly sampled positions and veloc-
ities over long-time dynamics or via sampling the clas-
sical Wigner distribution. Both methods can be per-
formed at arbitrary temperatures up to the point where
the normal mode analysis breaks down, at which point
the system needs to be sampled via BOMD to obtain a
meaningful distribution in a highly anharmonic ground
state potential.

The elements of the reduced electronic-photonic den-
sity matrix can be calculated as an average over the
distribution of nuclear configurations as

ρab(t) = ⟨ρ̄ab(t)⟩Traj., (159)

where ρ̄ab(t) = c∗a(t)cb(t) is the density matrix element
for a single trajectory (see Eq. 154 for the definition of
ca(t)). Any one-particle observable Ô can be computed
from the reduced density matrix as a trace written as,

O(t) = Tr
[
Ôρ̂(t)

]
=

∑
ab

⟨Ψa|Ô|Ψb⟩ ρab(t). (160)

Here, Ô can be either an electronic, photonic, or nuclear
observable. For the case of a nuclear observable, the
operator is simply downgraded to a function O, removed
from the trace, and averaged over all initial conditions.

4.1.3 Ab Initio Nuclear Gradients

For ab initio non-adiabatic dynamics of realistic
molecules, the difficulty often is obtaining the nec-
essary components for the propagation of the nuclear
and electronic DOFs, such as the gradients of the PESs
∇REa and more non-trivially the derivative couplings
between electronic states dαβ . In polaritonic systems,
one encounters new terms which contain gradients on
the electronic dipole operators through the light-matter
coupling as well as the dipole self-energy terms in the
PF Hamiltonian (Eq. 104), which can be understood
as ∇Rµαβ and

∑
γ ∇R[(µαγ · ê)(µγβ · ê)]. Explicit

expressions for these quantities was recently formulated
in the adiabtic-Fock basis for on-the-fly quantum dy-
namics simulations.96 However, these quantities are
rarely available in standard electronic structure pack-
ages, including the derivative couplings dαβ), due to
the complexity of obtaining the analytical expression
for excited state electronic structure method. The
analytic derivative couplings have only recently been
developed for NAMD simulations for common excited
state methods like TD-DFT238,239 over the last decade
or so and implemented in only a few electronic structure
or NAMD packages.240,241 Additionally, a recent work
indicated that the explicit formulation of the deriva-
tive couplings may not be needed and can in fact be
approximated very accurately only using the diagonal
gradients and potential energies.242

Recently, Zhang and Tretiak implemented analytic
nuclear gradients on the dipole and simulated the photo-
excited dynamics of the stilbene molecule.243 In this
work, the authors modified the NEXMD software pack-
age240,244–254 to include the pQED Hamiltonian (see
Sec. 3) at the Jaynes-Cummings level with all proper
gradients required for this Hamiltonian (i.e., with-
out DSE and making the rotating wave approxima-
tion). Additionally, the gradients on the potential en-
ergy surfaces, non-adiabatic couplings, and dipole gra-
dients were achieved analytically at the TD-AM1255

level of theory in the collective electronic oscillator
(CEO) framework.152,240,256 Most importantly, the nu-
clear gradient on the bare transition dipole between the
ground and excited electronic states was computed as
µ0α = Tr[µ̂X̂0α] in the atomic orbital {o, v} basis and
can be understood as,

∂µ0α

∂Rj
=

∑
ov

∂µov

∂Rj
X0α

vo + µov
∂X0α

vo

∂Rj
, (161)

where X0α
vo is the transition density matrix simi-

lar to that found in Eq. 142 between the ground
and αth excited electronic state in the CIS-
approximation152,173,186,187 (see additional discussion
in Sec. 3.2) and µov is the transition dipole between
atomic orbitals o and v. From a computational per-
spective, obtaining both terms in Eq. 161 is not always
trivial and may require additional methods such as
iterative optimization algorithms (e.g., bi-conjugate
gradient optimization) to acquire the individual terms
themselves, which adds an additional layer of com-
plexity and consideration when performing on-the-fly
NAMD simulations inside the cavity.243 When gener-
alizing beyond the Jaynes-Cummings model, one needs
to additionally account for the excited state permanent
and transition dipoles matrix elements.96 For more
complicated excited state methods (e.g., EOM-CC,
CISD, etc., see Sec. 3.2), acquiring analytic gradients
is not trivial and extremely expensive. However, the
analytic expression for the nuclear gradients on the
atomic orbital dipoles ∇Rµ and transition density
∇RX

0α (as well as the bare electronic non-adiabatic
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couplings dαβ and excited state PES gradients ∇Eα)
can, in principle, be achieved analytically in any TD-
SCF method243,257,258 and has been shown possible in
similar works.61,213,259,260 However, the implementa-
tion of such quantities in commercial or open-source
electronic structure packages are few and far between.

4.1.4 Fewest Switches Surface Hopping

Fewest Switches Surface Hopping (FSSH) approach
is a widely used approximate quantum dynamics ap-
proach261,262 for simulating non-adiabatic molecular
dynamics. The FSSH approach, a mixed-quantum clas-
sical approach (also see EH approach in Sec. 4.1.2), is
a stochastic method where the nuclear DOFs “jump”
or “hop” between adiabatic states. Between such hops,
the nuclear DOFs evolve classically following one adi-
abatic state referred to as the active state. This is in
contrast to the mean-field EH approach where the nu-
clear DOFs evolve over a mean surface. This approach
has also been recently used to simulate polariton chem-
istry.61,96,143,213,243,260,263

Here we provide a brief overview of the FSSH ap-
proach for simulating polariton quantum dynamics.
Similar to the EH approach the electronic-photonic sub-
system is treated quantum mechanically while the nu-
clear DOF are evolved classically. Just as in Sec. 4.1.2
the electronic-photonic wavefunction is written as,

|Ψ(t)⟩ =
∑
a

ca(t)|Ψa(R(t))⟩ (162)

The expansion coefficients ca(t) undergo direct TDSE
propagation as in Eq. 156. The forces on the nuclear
DOFs then simplify to,

F(t) = −⟨ΨS(R(t))|∇RĤpl|ΨS(R(t))⟩
= −∇RES(R(t)), (163)

which only includes the gradient along a single polari-
tonic PES corresponding to the active state |ΨS(R(t))⟩.
The active state S jumps from polaritonic state S = a
to S = b with probability Pa→b as,

Pa→β(t) = MAX

[
− σab(t)

ρaa(t)
, 0

]
, (164)

with,

σab(t) = 2Re
[
ρab(t)

]dR
dt

· dab(R), (165)

where dab(R) = ⟨Ψa(R(t))|∇R|Ψb(R(t))⟩ and ρab(t) =
c∗a(t)cb(t). The hop from polaritonic state S = a to
S = b will occur if the following condition is met,

δ=b−1∑
δ=1

Pa→δ < ξ <

δ=b∑
δ=1

Pa→δ. (166)

At the moment of a hop, the velocities of the nuclei are
rescaled in the direction of the non-adiabtic coupling
vectors dab(R) ∼ (dR/dt)new − (dR/dt)old to retain a

constant total energy.264 If no solution exists to rescale
in this direction, the hop is called “frustrated” and is
usually discarded or the velocities of the nuclei are sim-
ply reversed and the active state remains the same.240

The initial conditions are similar to that of the EH
approach; however, if there exists a distribution of po-
laritonic coefficients at initial time {cα(0)}, then ini-
tial active state should also be sampled independently
for each trajectory (similarly to sampling of nuclear
DOFs) from the probability distribution defined by
PS(0) = {|ca(0)|2}. It is well known,262 FSSH suffers
from producing overly coherent (or lack of proper elec-
tronic decoherence) within the expansion electronic co-
efficients and will subsequently be problematic for the
polaritonic coefficients.262 Many ad hoc corrections ex-
ist to modify the expansion coefficients in FSSH to ac-
count for decoherence, such as the instantaneous deco-
herence correction (IDC),231,240 the energy-based deco-
herence correction (EDC),265 etc., as well as other forms
of the surface hopping scheme, such as the augmented
surface hopping (A-FSSH),266 the decoherence-induced
surface hopping (DISH),267 and the global flux surface
hopping268 schemes.

A major simplicity afforded by the FSSH method
is that the derivative coupling vectors dab(R) are
not explicitly required as the nuclear forces (unlike in
the mean-field EH method) do not require this quan-
tity for time-evolution (except at the hops for rescal-
ing), and the electronic propagation only requires the
scalar non-adiabatic coupling terms dab · dR/dt =
⟨Ψa|d/dt|Ψb⟩, which can be easily obtained via finite dif-
ference wavefunction overlaps of the polaritonic states
throughout the trajectory.269,270 This procedure is im-
mensely cheaper than the direct computation of the
non-adiabatic coupling vectors themselves, wherein one
only needs to compute the non-adiabatic coupling vec-
tors to rescale the nuclei at the moment of a hop.240 Or,
one can ignore the asymmetric nuclear velocity rescaling
altogether and perform uniform energy-based rescaling,
which is known to provide slightly worse dynamics but
alleviates the computation of the vector non-adiabatic
coupling altogether.

4.1.5 Other Approximate NAMD Methods

There exist a multitude of other schemes to approx-
imately solve the TDSE for a realistic system that
will not be discussed in this review. However, fu-
ture applications in simulating polaritonic dynamics will
require the use of more accurate methods compared
to EH and FSSH. Similar methods to EH exist that
are an extension to the Meyer-Miller-Stock-Thoss map-
ping schemes271,272 and lead to methods such as the
symmetric quasi-classical (SQC),273–283 partially lin-
earized density matrix (PLDM)284–286 and later the
spin-mapping (SM) approaches,287–292 which are all
mean-field-level methods in that they treat the forces on
the nuclear DOFs as an average over the electronic state
population and coherences similar to the EH method
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but all drastically outperform EH through, for exam-
ple, the inclusion of zero-point energy (all methods)
or using the correct mapping space to constrain the
population (sM). Note that many of these approximate
quantum dynamics approaches (such as PLDM, SQC,
SM, etc.) are formulated in the diabatic representation
and are incompatible with adiabatic electronic or po-
laritonic representation. The recently developed quasi-
diabatic scheme resolves this issue and allows combining
any of these diabatic dynamics approaches with adi-
abatic electronic or polaritonic representation without
requiring any additional non-trivial theoretical efforts
such as diabatization.143,279,282,285,293 Finally, methods
stemming from the exact factorization (XF) formal-
ism, which range from trajectory-based XF surface hop-
ping (XFSH) to coupled trajectory approaches (CTXF),
can also be utilized in the polaritonic basis which may
lead to additional methods depending on the choice of
factorization of the electronic, photonic, and nuclear
DOFs.294–301

4.2 Influencing Photochemical Reac-
tivities through Light-Matter Hy-
bridization

Coupling molecular excitations to a cavity photonic ex-
citation causes a hybridization of both types of excita-
tions, leading to the creation of new light-matter hy-
brid states.10 When the PESs of the molecular ground
and excited states are considered, the light-matter hy-
bridization creates hybrid polariton surfaces, as dis-
cussed in Sec. 1.1 (see Eq. 11). These polariton surfaces
hybridize the curvatures from both the ground and the
excited molecular states (see Fig. 6, Fig. 8, and Fig. 13)
and possess different levels of matter or photonic excited
character as a function of their nuclear coordinates (as
we have seen). Additionally, the curvature of these sur-
faces is modulated by the Rabi splitting and creates
new light-matter avoided crossings. These features of
the potential energy surfaces can modify the path that a
chemical reaction takes, resulting in a polariton-induced
change of reactivity. By tuning the cavity frequency
ωc and light-matter coupling strength gc, the features
of these hybrid polariton surfaces can be optimized to
control the outcomes of a variety of photochemical re-
actions.

The effects of changing ωc and gc on the hybrid po-
lariton surfaces can be understood as follows. Chang-
ing the cavity frequency ωc will change the energy of a
quantum state that has n photons associated with it by
the amount ℏωcn. For an electronic transition between
a molecular ground and excited state that is coupled
to the cavity photon mode, the molecular ground state
with n+1 photons (the |g, n+1⟩ state) will couple to the
molecule excited state with n photons (the |e, n⟩ state).
When the PESs of these ground and excited states have
different curvatures, different energetic shifts of ℏωc will
cause the |g, n + 1⟩ and |e, n⟩ PESs to intersect at dif-
ferent nuclear configurations. Different points of inter-

section (in the nuclear configurational space) lead to
different composite curvatures for the upper and lower
polariton surfaces which will affect the force the nu-
clei feel at a given configuration, thus influencing the
motion of the nuclear DOFs and altering the reaction
pathways compared to the bare molecules outside the
cavity. Note that in the above intuitive argument, we
have interpreted the Fock state |n⟩ as n photons con-
tained inside the cavity. This is only true when there is
no matter inside the cavity, and approximately accurate
when the light-matter coupling strength is weak. Rig-
orously, the photon number operator needs to be gauge
transformed as discussed in Eq. 62.

Changes of the light-matter coupling strength gc have
two primary effects. The first is that the upper and
lower surfaces will energetically “split” apart where the
|g, n + 1⟩ and |e, n⟩ PESs intersect, by the energy of
Rabi splitting which is 2ℏ

√
n+ 1gc when considering

the JC model (see Eq. 5). This is also known as a
cavity-induced avoided crossing,5,10 which can impact
how much populations on the upper and lower polari-
tons can transfer to each other. The second effect is that
larger values of gc will increase the extent of the regions
of the polariton surfaces that have mixed electronic-
photonic excited character. This change in excited char-
acter can impact how strongly these polariton states
interact with other quantum states.

These cavity-induced effects can be clearly demon-
strated using simple single-molecule model reactions,
which is ideal for an experimental setup with certain
plasmonic cavities20 (see Fig. 1a). One of the sim-
plest photochemical reactions is that of bond photodis-
sociation. The primary mechanism of this reaction is
a Franck-Condon photoexcitation of a molecule to a
molecular excited state, which has a curvature that
pushes the nuclei away from the bonded regime and to-
wards the dissociated regime. Absent this photoexcita-
tion, the nuclear wavepacket remains in the equilibrium
geometry of the ground state potential and resists dis-
sociation. How exactly to translate this PES hybridiza-
tion principle into the collective coupling regime is still
an open question, and the recent progress along this
direction will be discussed in Sec. 6.3.

Recent theoretical works have examined the ef-
fects of coupling the ground-excited transition
of photo-dissociation reactions to optical cavi-
ties.5,6,10,17,95,97,105,223,302–305 Fig. 13a-b illustrates the
typical molecular ground and excited surfaces present
in photodissociation reactions which are composed of
covalent and ionic bond characters.5 A key feature of
these surfaces is that they become nearly degenerate at
some finite nuclear distance away from the equilibrium
bond configuration. Additionally, some nuclear con-
figurations have larger gaps between the excited and
ground surfaces (pink arrow) than other configurations
(green arrow). Tuning the cavity frequency to match
these energy gaps will create a cavity-induced avoided
crossing at that respective nuclear configuration, which
will generally be closer to the equilibrium bond con-
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Figure 13: Polariton Photochemistry: Modifying molecular photochemistry through light-matter hybridiza-
tion. (a) Schematic illustration of a cavity and the potential energy surfaces of an uncoupled NaI molecule with ionic and
covalent molecular states. (b) Ground and excited state potential energy surfaces for a molecule outside the cavity and (c)
when coupling the reaction to a cavity leading to the formation of the upper (red) and lower (blue) polaritons. The cavity
frequency ωc is shown by the green arrow. (d) Photodissociation of a NaI molecule inside and outside the cavity. Subpanel
(i) presents the molecular ground state population dynamics after photoexcitation outside the cavity while subpanels (ii-iii)
present these population dynamics inside the cavity at various light-matter couplings g. (e) Modifying a photo-isomerization
reaction inside cavity. Subpanel (i) shows the molecular potential energy surfaces outside the cavity. These surfaces result in
a nearly 50%/50% mixture of cis and trans after reacting on the excited surfaces. Subpanels (ii)-(iii) show the PESs when
coupling to cavities of different photon frequencies ℏωc. These hybrid surfaces allow either nearly 100% cis (subpanel ii)
selectivity or nearly 100% trans (subpanel iii) selectivity. Subpanel (iv) shows the relative % yield of the cis or trans isomer as
a function of ℏωc. Panels (a) and (d) are adapted from Ref. 5 with permission. Copyright 2016 American Chemical Society.
Panel (e) is adapted from Ref. 13 with permission. Copyright 2019 American Chemical Society.

figuration than the original molecular ground-excited
avoided crossing. In particular, Fig. 13c, adapted from
Ref. 17 along with Fig. 13b, demonstrates the effect
of hybridizing the molecule excited state |e, 0⟩ with
the photon-dressed ground state |g, 1⟩. The |g, 1⟩ state
surface has the same curvature of the molecule ground
state |g(R)⟩ and is energetically raised by ℏωc (due
to the single photon dressing) which allows it to in-
tersect and hybridize with the molecule excited surface
|e, 0⟩, much closer to the equilibrium bond configuration
than the bare molecule surfaces illustrated in Fig. 13b.
This causes the upper polariton surface (red curve in
Fig. 13c) to have a broad well shape that resists dis-
sociation, and the lower polariton surface (blue curve
in Fig. 13c) to have a potential well centered around
the equilibrium bond configuration. Upon Franck-
Condon photoexcitation and with large Rabi splittings,
the curvatures of these surfaces encourage the nuclear
wavepacket to stay near the equilibrium bond config-
uration until the excitation eventually relaxes to the
molecule ground state through loss channels. Fig. 13d

shows molecular ground state population dynamics of
the dissociation reaction of a NaI molecule coupled to
an optical cavity, as illustrated in panels a-c. With (i)
no coupling or (ii) weak light-matter coupling, a large
portion of the nuclear wavepacket moves towards ionic-
covalent avoided crossing, transfers to the flat part of
the covalent curve, and dissociates readily. With (iii) a
stronger light-matter coupling, the nuclear wavepacket
becomes trapped in the wells of the upper polariton
state (red surface shown in panel c), resulting in an
oscillatory covalent character and less dissociation since
the original ionic-covalent avoided crossing and ener-
getic plateau is not reached by the wave packet.

Coupling photoisomerization reactions to an opti-
cal cavity have also been shown to alter the re-
active outcomes, both experimentally3 and theoret-
ically.7,10,13,212 Fig. 13e(i), adapted from Ref. 13,
presents the model isomerization reaction, with a
ground state PES (black curve) which has two well-
defined minima that correspond to the cis and trans
configurations. The excited state |e⟩ (cyan curve) is
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modeled with a relative flat PES due to the delocaliza-
tion of the electron density. Panels (ii)-(iii) present the
modifications of the polariton potentials due to light-
matter coupling, for two different cavity photon fre-
quencies. In the zero coupling case, outside the cavity
(i), the nuclear wavepacket, once excited to the state
|e⟩, can freely explore the excited PES. Once the decay
channels take over (radiative and non-radiative decay),
the system will relax back to the ground state |g⟩, and
end up in either in the cis or the trans nuclear con-
figuration. The reaction exhibits barely any selectivity
for the cis or trans configuration. When the molecules
are coupled inside the cavity (ii-iii), the excited surface
curvatures are modified specifically based on the cavity
frequency. For cavity frequency ωc = 2.18 a.u. (ii), the
emerging feature of the potential is a new barrier on the
upper polariton surface. Through a Franck-Condon ex-
citation of the system, a nuclear wavepacket is placed on
the upper polariton surface. Due to the presence of the
new barrier, the nuclear wavepacket is trapped on the
left side (cis) which gives cis selectivity upon relaxation
to the ground state. Alternatively, for cavity frequency
ωc = 3.13 a.u. (iii), a nuclear wavepacket starting on
the lower polariton surface transfers to the trans side
of the nuclear configuration space and becomes trapped
in a potential well, resulting in trans selectivity upon
relaxation to the ground state. As a consequence, the
percent yield of the isomerization reaction (iv) can be
controlled to be nearly 100% cis or 100% trans by tun-
ing the cavity frequency.

These theoretical investigations on the hybridization
of light and matter excited surfaces highlight the possi-
bility for photochemistry to be controlled by tuning the
coupling strength gc and the cavity frequency ωc. How-
ever, the investigations in Fig. 13 only involved a single
molecule coupled to a single mode with idealized model
potentials inside a lossless cavity. These simplifications
merit further investigation into simulations of more re-
alistic polaritonic systems. In particular, there exist
several other factors that play significant roles in the
ability to control photochemistry, which will be elabo-
rated upon in the following sub-sections. The collective
coupling effect will be extensively discussed in Sec. 6.
On the other hand, the theoretical investigations pre-
sented in this section might be able to be carried out
in actual experimental investigations using a plasmonic
cavity setup.20

4.3 Ab Initio Simulations of Polariton
Photo-Isomerizations

Utilizing the NAMD methods described in Sec. 4.1,
several realistic ab initio simulations of polariton-
mediated photochemical reactions have been investi-
gated.61,213,306 Using these methods provides a simu-
lation with more atomistic details compared to the sim-
pler model simulations (e.g. in Fig. 13e) and allows for
detailed molecular insight into cavity modified photo-
chemical reactions.

The influence of cavity coupling on the mechanisms of
the photo-isomerization of azobenzene was investigated
through realistic ab initio simulations61,213 in the work
shown in Fig. 14a-c, adapted from Ref. 61. The reaction
involves photo-excitation of azobenzene under ultravio-
let light, which allows for isomerization from trans to cis
on the excited state potential energy surfaces (Fig. 14a).
In this molecule, there is an intrinsic conical intersection
between the S0 (ground adiabatic electronic state) and
S1 (first excited adiabatic electronic state) potential en-
ergy surfaces, in the nuclear configurational space of the
CNNC dihedral angle (coupling coordinate) and NNC
angle (stretching coordinate). Both coordinates are il-
lustrated in Fig. 14a. The light-matter interaction be-
tween the |S0, 1⟩ and |S1, 0⟩ surfaces causes a Rabi split-
ting between the upper and lower polariton surfaces, as
shown along the NNC angular DOF in Fig. 14b.

The electronic structure was computed using the
pQED scheme (see Sec.3.1) using the Jaynes-Cummings
Hamiltonian (i.e., no counter-rotating terms or dipole
self-energy) with a minimal basis of |S0, 0⟩, |S0, 1⟩, and
|S1, 0⟩. Here the electronic structure was computed at
the semi-empirical AM1 level255 coupled with the float-
ing occupation molecular orbital configuration interac-
tion (FOMO-CI) scheme61,307–309 for the calculation of
the lowest singlet excited state S1.

The Rabi splitting is nuclear configuration dependent,
due to the nuclear-dependent adiabatic energy gap and
dipole (both transition and permanent dipoles). This
avoided crossing region centered at the Rabi splitting,
along with the nearby polariton-induced conical inter-
section61 (where the light-matter coupling term µ̂ · ê
(Eq. 104) goes to zero because the component of the
dipole along the cavity field polarization direction goes
to zero for a certain nuclear configuration), allows for
population to transfer between the upper and lower po-
lariton surfaces.

Fig. 14c presents the polariton population dynam-
ics computed with a decoherence-corrected surface hop-
ping approach.61 While the diabatic excited state pop-
ulation dynamics of |S0, 1⟩ (golden dotted line) and
|S1, 0⟩ (purple dotted line) show a trend of smooth de-
cays/increases, the upper polariton population P+ (pur-
ple solid line) and lower polariton population P− (or-
ange solid line) show oscillations which are mediated
by of the polaritonic avoided crossing and polaritonic
conical intersection.61 The consequence of these popu-
lation transitions is that a large amount of population
was transferred to the lower polariton whose curvature
resists a conversion from the trans to the cis configura-
tion, resulting in a quenching of the photoisomerization
reaction rate relative to outside the cavity.

In the previous example, the coupling of the azoben-
zene photoisomerization reaction to a cavity was seen
to reduce the isomerization quantum yield relative to
outside the cavity. However, in another work,213 the
authors showed that one is able to enhance the rate of
the photoisomerization reaction (see Fig. 14d-f). Here,
the azobenzene molecule is confined inside a molecular
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Figure 14: Realistic Photochemistry (a) (Top, left) Schematic of the azobenzene molecule coupled to a Fabry–Pérot
cavity with coupling strength g, cavity loss κ, and molecular photon emission rate γ. (Bottom, left) The isomerization
reaction of azobenzene from the trans to the cis configuration at ultra-violet (UV) wavelengths and the reverse at visible
(VIS) wavelengths. (Right) Two dominating molecular coordinates for the CNNC torsional dihedral angle as well as the NNC
angle which dictate the intrinsic bare molecular conical intersection and subsequent cavity-induced conical intersection. (b)
Polaritonic potential energy surfaces at the Jaynes-Cummings level with the uncoupled ground state ES0,0 (black) as well as
the upper E+ (purple) and lower E− (orange) polaritonic states at the semi-empirical AM1 level coupled with the floating
occupation number molecular orbital configuration interaction (FOMO-CI) approach. (c) Populations of the various states
(solid lines, color-coded with panel b) after initial excitation to the upper polaritonic state. The dashed lines with symbols
are the populations of the basis states |PS0,1⟩ (tan) and |PS1,1⟩. Here, no cavity loss or molecular photon emission rates were
used (i.e., κ, γ = 0), assuming a perfect cavity and infinitely long molecular emission time. The cavity coupling was set to
g = 0.01 a.u. and cavity polarization ê perpendicular to the main axis of the mirror, as shown in panel (a). (d) Schematic
of the azobenzene molecule in a plasmonic cavity with polarization ê shown by the black arrow. The computational system
includes QM (azobenzene) and MM (water solvent and metal lattice atoms). (e) Population dynamics of the trans and cis
populations for zero coupling strength (zc, purple lines) and strong coupling (sc, orange lines). Strong coupling results in a
larger steady-state cis population. (f) Population dynamics of the diabatic states for outside the cavity (dotted lines) and
inside the cavity (solid lines). The excited diabatic states inside the cavity take longer to decay to the ground state than
outside the cavity. Panels (a)-(c) are adapted from Ref. 61 under the CC BY license. Panels (d)-(f) are adapted with
permission from Ref. 213. Copyright 2019 Elsevier Inc.

ring (or host molecule) using a QM/MM level of de-
scription with the molecular ring and explicit water sol-
vent treated at the MM level. Both the molecular rings,
solvent, and azobenzene are further situated between
two gold planar mirrors (Fig. 14d). This configuration
of the simulation closely resembles some actual experi-
ments where a single molecule is coupled to a plasmonic
cavity in Ref. 20. In principle, one should be able to
experimentally check the prediction of this simulation
work.213 In this calculation, several higher molecular
excited states were included,213 increasing the chemical
accuracy of the simulation relative to the simulations
that only consider a single electronic excited state. The
population dynamics revealed that strong light-matter
coupling enhanced the conversion of the trans to cis

configurations (Fig. 14e). In particular, the trans to
cis reaction was faster at short times outside the cavity,
but the strong light-matter coupling allowed the reac-
tion inside the cavity to persist much longer. This re-
sulted in a steady state cis population nearly twice that
of outside the cavity. The proposed mechanism for this
photoisomerization rate enhancement is that the pho-
tonic |S0, 1⟩ state acts as a reservoir for the |S1, 0⟩ state
population which helps to delay the decay to the ground
state before the isomerization can occur. This can be
seen in the population dynamics of the diabatic states
(Fig. 14f) where the strong coupling |S1, 0⟩ state main-
tains a large population for longer than the no cavity
|S1⟩ state.

These studies on the photoisomerization of azoben-
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zene inside optical cavities demonstrate that the details
of the electronic structure and surrounding environment
can have a strong influence on the ability of cavity cou-
pling to control chemical reactions. In particular, it
was seen that the reaction modeled in Fig. 14a-c experi-
enced more quenching and less steady state cis product
compared to outside the cavity, whereas the reaction
modeled in Fig. 14d-f was able to enhance the isomer-
ization relative to outside the cavity. These differences
in reactivity can arise due to experimentally relevant
differences in the details of the structural setup of the
model, which may not be able to be captured in sim-
pler model systems that lack ab initio detail. Thus, it is
important to verify the results of simple model simula-
tions with more realistic ab initio simulations whenever
possible and to explore the different photochemical reac-
tion mechanisms inside optical cavities that are possible
when utilizing electronic structure calculations during
the reaction dynamics.

4.4 Polariton-Mediated Charge Trans-
fer Reactions

Another fundamental, yet important, type of photo-
chemical reaction is excited state charge transfer. The
basic principle of this reaction is that a charged par-
ticle, often an electron, can transfer among molecules
after the system is excited, often due to photoexcita-
tion. This transfer is allowed by the presence of elec-
tronic coupling between so-called “donor” and “accep-
tor” states.310–318 Accompanying the transfer of charge,
there is often a reorganization of the nuclei based on the
new electric potential of the acceptor state. The free en-
ergy difference ∆G, donor-acceptor coupling strength
VDA, and reorganization energy λ all play key roles in
the rate of excited state charge transfer.

Marcus theory319–322 is one of the most commonly
used descriptions of charge transfer in the weak donor-
acceptor coupling regime when VDA ≪ kBT , where kB is
the Boltzmann constant and T is the temperature. The
electron transfer rate constant kET for the |D⟩ → |A⟩
transition described by Marcus theory319–322 is

kET =
|VDA|2

ℏ

√
πβ

λET
exp

[
−β (∆G+ λET)2

4λET

]
, (167)

where VDA = ⟨D|Ĥel|A⟩ is the donor-acceptor coupling
strength, β = 1/kBT with Boltzmann constant kB and
temperature T , λET is the reorganization energy associ-
ated with the electron transfer reaction (not to be con-
fused by the light-matter coupling strength in Eq. 105),
and ∆G is the difference in free energy between the
donor and acceptor states (also known as the driving
force). When including the ground state in this de-
scription, the ground, donor, and acceptor states can be
thought of as parabolas that are shifted from each other
in terms of their minimum energy and nuclear configu-
ration, with coupling between the donor and acceptor
parabolas.

D, 0

A, 0

G, 1

−, 0

+, 0

G, 0

(a)

(b) (c)

Figure 15: polariton-mediated electron transfer. (a)
Schematic illustration of modifying the driving force of
photo-induced electron transfer reaction by coupling to the
cavity. Polariton state |+, 0⟩ lie above the acceptor state
|A, 0⟩ (allowing downhill chemical reaction) while the origi-
nal donor state |D, 0⟩ lies below |A, 0⟩. (b) Polaritonic po-
tentials |G, 0⟩, |±, 0⟩ that are color coded by light-matter
coupling strength gc. (c) Electron transfer rate constant as a
function of light-matter coupling strength gc computed from
Marcus theory and from direct quantum dynamics simula-
tion using the PLDM approach.284,286 Adapted from Ref.
12 with permissions. Copyright 2020 American Chemical
Society.

When a charge transfer reaction is coupled to an op-
tical cavity, many of the key parameters in Eq. 167 are
modified due to light-matter coupling. One of the most
important modifications is to the driving force ∆G as
shown in Fig. 15a, adapted from Ref. 12. In this model,
three diabatic electronic states are considered: a ground
state |G⟩, an optically bright excited state denoted as
the donor state |D⟩, and an optically dark excited state,
denoted as the acceptor state |A⟩. This model setup
could correspond to many experimental systems such
as a colloidal nanocrystal (NC) as a donor molecule
and an organic acceptor molecule.318,323 The molecu-
lar excitation transition |G⟩ → |D⟩ is coupled to the
cavity (due to its non-zero ground-to-excited transition
dipole moment) whereas the acceptor state |A⟩ (which
is also an electronic excited state) is not directly cou-
pled to the cavity but is coupled to the donor state
|D⟩ through the diabatic electronic coupling VDA. It
is also assumed that the donor excited state |D⟩ and
the ground state |G⟩ have the same minima position,
meaning there is no Huang-Rhys factor (or reorgani-
zation energy) between |D⟩ and |G⟩. This means that
the |G, 1⟩ state (orange solid curve in Fig. 15b) and
the |D, 0⟩ state (black dashed curve in Fig. 15b) are
nested with the same minimum position, indicating the
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ET re-organization energy λ is not changed upon cou-
pling to the cavity (as opposed to the case illustrated in
Fig. 27a).

Assuming a thermal equilibrium in the ground state
and quasi-classical nuclear initial conditions upon in-
stantaneous photoexcitation, Marcus theory can be
used to describe the charge transfer rate between the
|±, 0⟩ state to the |A, 0⟩ state. The polariton-mediated
electron transfer (PMET) rate constant is expressed as

k±c =
|V ±

c |2

ℏ

√
πβ

λ
exp

[
− β

(∆G±
c + λ)2

4λ

]
, (168)

where ∆G±
c is the polariton-mediated driving force be-

tween the photon-dressed acceptor state |A, 0⟩ and the
polariton |±⟩ states (only considering the n = 0 case of
the JC ladder in Eq. 4), is expressed as

∆G±
c = ∆G− 1

2
ℏ∆ωc ∓

1

2
ℏΩR, (169)

where ℏ∆ωc = ℏωc − (ED − EG) is the light-matter
detuning, and V ±

c is the polariton-mediated coupling

V ±
c = ⟨±|Ĥpl|A, 0⟩. (170)

Since the acceptor state does not carry any ground-
to-excited transition dipole, the matter-cavity coupling
term gc does not provide any coupling between polari-
ton states and the |A, 0⟩ state. Thus, the polariton-
mediated effective coupling V ±

c only has a contribution
from the electronic Hamiltonian operator. Under the
JC model consideration, the cavity-mediated electronic
couplings between |+, 0⟩ and |A, 0⟩ states is

V +
c =

(
sin Θ⟨G, 1| + cos Θ⟨D, 0|

)
|Ĥpl|A, 0⟩

= cos Θ · VDA, (171)

and similarly, V −
c = sin Θ·VDA. Thus, the effect of light-

matter coupling always reduces the effective electronic
couplings between the |±⟩ states to the acceptor state
|A, 0⟩. For the resonant coupling condition ED −EG =
ℏωc, sin Θ = cos Θ = 1√

2
, and thus V ±

c = VDA/
√

2,

resulting in a two-fold reduction of the rate due to the
light-matter hybridization. However, more significant
modifications can come from the exponential part of
Eq. 168, which depends on ∆G±

c .
When considering a wide range of light-matter cou-

pling strengths ℏgc, the PMET driving force ∆G±
c and

thus the PMET rate (Eq. 168) can be tuned signifi-
cantly. Note that Eq. 168 is based on the JC model,
which is simple and intuitive but will eventually break-
down (see Fig. 3) when gc/ωc ≥ 0.1. Directly numerical
calculations of ∆G±

c and V ±
c are necessary when going

beyond the JC approximation, which is detailed in Ref.
12. Fig. 15b demonstrates the upper and lower polari-
ton surfaces and their energetic shifts for several differ-
ent Rabi splittings. Comparing these polariton surfaces
to the acceptor surface |A, 0⟩ in solid black, the polari-
ton surfaces are able to access many different charge

transfer regimes (normal, activation-less, and inverted),
where the forward ET reaction can be made more or less
favorable depending on the initial state (upper or lower
polariton) and the magnitude of the Rabi splitting.12

This can be seen in the effect of different light-matter
coupling strengths gc on the PMET rate as predicted
from Marcus theory.12 The cavity-induced Rabi split-
ting raises the energy of the upper polariton surface
and lowers the energy of the lower polariton surface
(Fig. 15a). Consequentially, the ∆G from the upper
polariton to the acceptor will decrease while the ∆G
from the lower polariton to the acceptor will increase.
In particular, if the acceptor state has higher energy
than the bare donor state, but lower energy than the up-
per polariton state, an uphill reaction outside the cavity
can be modified as a downhill reaction inside the cavity,
when exciting to the upper polariton surface (and when
the upper polariton lifetime is long enough for the reac-
tion, e.g., under a continuous irradiation condition that
constantly supplies |UP⟩ population.324

Fig. 15c presents the PMET rates from the upper
polariton |+⟩ to the acceptor |A, 0⟩ as a function of
ℏgc, predicted from Marcus theory (solid line) and from
a partial-linearized density matrix (PLDM) dynamics
simulation284 (dotted line). The PMET rate can be en-
hanced by a factor of over 100 for this model when the
system is resonantly coupled to an optical cavity with a
coupling strength of ℏgc = 600 meV. Beyond this cou-
pling strength, the rate begins to decrease due to the
|+⟩ state sitting in the Marcus inverted regime. Alter-
natively, the lower polariton could be initially excited
to more readily sample other Marcus regimes resulting
in a PMET rate smaller than those outside the cavity.12

For systems with donor states that have non-zero re-
organization energy relative to the ground state, the
donor excited state |D⟩ and the ground state |G⟩ are
modeled as parabolas with different minima positions,
as illustrated in Fig. 27a. In the limit that the Rabi
splitting is larger than the donor-ground reorganiza-
tion energy and the light-matter detuning, the polari-
ton states |±⟩ (generated by hybridizing the |D, 0⟩ and
|G, 1⟩ states) are nearly harmonic and have a potential
minimum that is in between the minima of the |D⟩ and
|G surfaces, as illustrated in Fig. 27a. This results in
an effective reduction of the reorganization between the
polariton states and the ground state. This effective
reorganization energy is reduced by a factor of 1/4 rela-
tive to the original donor-ground reorganization energy
outside the cavity due to the polariton superposition
only having half of the donor character.8 Note that the
PMET rate is exponentially sensitive to the effective re-
organization energy (Eq. 168). This mechanism of en-
hancing PMET due to the effective reduction of the ET
reorganization energy is referred to as the polaron de-
coupling mechanism.8 Note that this effect only changes
the donor-ground reorganization energy and does not
affect the acceptor-ground reorganization energy for ac-
ceptor states that do not couple to the cavity.

Although we have only considered a single molecule
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coupled to the cavity, the proposed modification of
PMET rate can also be accomplished in the collective
coupling regime (which involves many molecules cou-
pled to the cavity as described in Sec. 6.2), involv-
ing both a modification of the effective driving force
∆Gc

324,325 as well as the polaron decoupling mecha-
nism.8

While having different chemical mechanisms, singlet
fission reactions share much in common with charge
transfer reactions in terms of how they can be controlled
using light-matter coupling.326 Like charge transfer re-
actions, singlet fission reactions are often modeled quan-
tum mechanically with singlet and triplet surfaces that
are shifted parabolas with certain driving forces and re-
organization energies. These fission reactions can thus
be controlled through light-matter coupling with the
same effects previously described in this section. In
particular, theoretical investigations327–330 have shown
that cavities may increase or decrease triplet yield and
production rate depending on the singlet fission param-
eters as well as cavity parameters such as the cavity
frequency and coupling strength. The similar cavity
control of singlet fission reactions and charge transfer
reactions highlights the broad applicability of cavity
modifications to many different types of photochemical
reactions.

4.5 Cavity-induced Conical Intersec-
tions

Coupling molecules to an optical cavity can also cre-
ate a new type of conical intersection (CI), which is
referred to as the polariton-induced conical intersec-
tion (PICI).95,331 Conical intersections in general arise
when the separation between adiabatic electronic sur-
faces goes to zero at a particular nuclear configuration,
causing a degeneracy (which appears as a cone type of
structure). The cavity photon mode and the molecule
are coupled through the λ · µ̂ term in Eq. 104, which
characterizes the light-matter coupling vector oriented
in the direction of the cavity polarization unit vector ê.
We denote the angle between the dipole vector µ̂ and ê
as θ (not to be confused with the incident angle in the
Fabry–Pérot cavity illustrated in Fig. 4), and µ̂ = |µ̂|,
hence the light-matter coupling can be expressed as

λ · µ̂ = λµ̂ cos θ. (172)

For polaritonic systems, the PICI can form when the
orientation of a molecule’s ground-to-excited transition
dipole moment becomes orthogonal to the cavity polar-
ization vector95,331 such that θ = π/2, and the light-
matter coupling vanishes at this orientation. Thus, one
can see that even for a diatomic molecule where there
are no intrinsic electronic CIs, there will be a PICI due
to the presence of the additional DOF, i.e., the angle θ
between the dipole and the field polarization direction.
This angle serves as the tuning coordinate in the CI.
One can thus engineer a new CI that did not exist pre-

viously by coupling molecules with a cavity. These CIs,
either intrinsic or cavity-induced, lead to a singularity in
the non-adiabatic coupling (see Eq. 23) and thus cause a
breakdown of the Born-Oppenheimer approximation in
the vicinity of the CI. Unlike those intrinsic molecular
CIs, cavity-induced CIs depend on the properties of the
cavity and can thus be tuned to control photochemical
reactivity.

In order to understand how cavity-induced CIs can
affect photochemical reactivity, a characteristic of CIs
called the Berry phase332 (also known as the geometri-
cal phase) should be discussed. For a diatomic system
with a stretching coordinate R and a rotation angle, θ,
relative to the cavity polarization vector (not be con-
fused with the incident angle of photon used in Fig. 4),
the coordinates in the configuration space can be de-
noted as X ≡ {R, θ}. Based on the JC model (Eq. 4),
the upper and lower polariton states can be expressed
as

|+, 0(X)⟩ = cosΘ(X)|e, 0⟩ + sinΘ(X)|g, 1⟩, (173)

|−, 0(X)⟩ = −sinΘ(X)|e, 0⟩ + cosΘ(X)|g, 1⟩, (174)

with the mixing angle

Θ(X) =
1

2
tan−1 2⟨g, 1|Ĥpl|e, 0⟩

Eg1(X) − Ee0(X)
, (175)

where the coupling ⟨g, 1|Ĥpl|e, 0⟩ =
√

ℏωc

2 ⟨1|(â† + â)|0⟩ ·
⟨g|λ · µ̂|e⟩, the energies are Eg1(X) = ⟨g, 1|Ĥpl|g, 1⟩ and

Ee0(X) = ⟨e, 0|Ĥpl|e, 0⟩, and Ĥpl is defined in Eq. 106.
The Berry phase332,333 is the change of sign of the elec-
tronic adiabatic wavefunction when the nuclei follow a
closed path around the CI, which can be expressed as

γa = −i
∫
S

∇× ⟨Ψa(X)|∇X |Ψa(X)⟩ dS

=

∮
C

∇XΘ(X)dX, (176)

where |Ψa⟩ is a single valued polariton adiabatic wave-
function, and Θ(X) is the mixing angle (Eq. 175). The
derivation of Eq. 176 can be found in Ref. 95. For a
molecule inside a cavity, this Berry phase was analyzed
in the work shown in Fig. 16a, adapted from Ref. 95.

When a molecule can freely rotate inside a cavity,
the angle θ between the dipole of the molecule µ̂ and
the cavity polarization ê will change and influence the
strength of light-matter coupling (see Fig. 16a(i)). At
a particular bond distance R where the |e, 0⟩ and |g, 1⟩
surfaces intersect, a PICI is formed when the ground-
to-excited transition dipole moment and cavity polar-
ization vectors are orthogonal (θ = π/2). The nuclear
path that takes a particular encirclement around this
PICI in the {R, θ} configuration space (Fig. 16a(ii), red
path) will gain a phase of π on its adiabatic wavefunc-
tion |Ψa⟩ after one full encirclement of the PICI based
on Eq. 176. On the other hand, taking any other closed

53



θ "

(a)
(a) (b

(c) (d

̂"

θ

 0

 0.25

 0.5

 0.75

 1

 4  5  6  7  8  9
R (a.u.)

0

!/4

!/2

!/4

!

"

R (a.u.)

CI

"

0

!/4

!/2

3!/4

!

θ #

 0

 0.25

 0.5

 0.75

 1

 0  1

 0

 0.25

 0.5

 0.75

 1

 0

 0.25

 0.5

 0.75

 1

 0

0.25

 0.5

0.75

 1

 0

 0.

 0.

 0.

 0.

 0.

 0.

CI

 0  1

 0

 0.25

 0.5

 0.75

 1

CI

(a) (b)

(c) (d)

1 2 3 6 7 8 9 10

Before Encirclement After Encirclement

P
ro

b
a
b
ility

 D
e
n
s
ity

P
ro

b
a
b
ility

 D
e
n
s
ity

0

/4

/2

3/4



R (a.u.)

0

/4

/2

3/4



θ
θ

 0

0.25

 0.5

0.75

 1

 0

 0.

 0.

 0.

 0.

 0.

 0.

J = 1

J = 0

D
is
s
o
c
ia
ti
o
n

C
re

at
iv

e 
C

o
m

m
o
n
s 

A
tt

ri
b
u
ti

o
n
-N

o
n
C

o
m

m
er

ci
al

 3
.0

 U
n
p
o
rt

ed
 L

ic
en

ce
.

w- +¶
¶( )

e w
m q m q
m q m q

= -
¶
¶

+ +
-

-

q
S

S

S S S

S S S

S S

S + ñ S ñ

photonicmatter

(a)

(ii)

(iii)

(iv)

(i)

(ii)

(iii)

(c)

(ii)

(iii) (iv)

(i)

(b)

(i)

Figure 16: Cavity induced conical intersections. (a) (i) Diagram of a diatomic LiF molecule with bond length R
inside a Fabry–Pérot cavity. The molecule has a transition dipole moment along the R axis which forms an angle θ with
the cavity polarization vector ϵ̂. The molecule is free to rotate along this angular DOF which allows the magnitude of the
light-matter coupling to change and thus creates a light-induced conical intersection (LICI). (ii) Phase-space plot of various
nuclear encirclement paths (a full 2π rotation in ϕ around a point) for the LiF molecule. For paths that do not encircle
the LICI (yellow, blue), no Berry phase is accumulated. For paths that do encircle the LICI (red), a nonzero Berry phase
is accumulated. (iii) Nuclear probability density before (left) and after (right) encircling the LICI for the J = 0 angular
momentum state. Note that a node is formed at θ = π/2 after encirclement. (iv) Same as (iii) but for the J = 1 angular
momentum state. Note that the original node at θ = π/2 before encirclement has disappeared after encirclement. (b) (i)
Potential energy surfaces of the upper and lower polariton for a LiF dissociation reaction coupled to a cavity. Note the LICI
where the separation between the two surfaces vanishes. (ii) Population dynamics of the dissociated state when the molecule
is prevented from rotating (hence “1D”). The different lines correspond to either the no light-matter coupling case or to
strong coupling with different initial Fock states n. (iii) Same as (ii) but the molecule is allowed to rotate (hence “2D”). The
population dynamics of the 2D case versus the 1D case become more different as the initial Fock state becomes larger. (c) (i)
Potential energy surfaces for a cavity-coupled pyrazine molecule with two molecular excited surfaces that share an intrinsic
CI. The coupling strength, in this case, is ℏgc = 120 meV. The coupling to the cavity causes the original intrinsic CI to
“split” into two polaritonic CIs (PICI). Two of the three excited surfaces have partial photonic character and both of these
states form PICIs with the third molecular excited state. (ii) Same as (i) but for coupling strength gc = 240 meV. The larger
coupling has increased the Rabi splitting which causes the two partially photonic states to be further apart. Consequentially,
the PICIs are at different locations and are further apart. This dependence of the CI position on the coupling strength is
specific to PICIs while the position of LICIs does not depend on the light-matter coupling strength. (iii) Nuclear probability
density of pyrazine outside the cavity. Note the lack of a node at coupling mode Qc = 0 and tuning mode Qt = −1. (iv) Same
as (iii) but inside the cavity. The nuclear density is less spread out relative to outside the cavity. Additionally, a node has
appeared at Qc = 0 and Qt = −1, indicating that the position of the original (intrinsic) CI outside the cavity has shifted to a
new (polaritonic) CI position due to light-matter coupling inside the cavity. Panel (a) is adapted from Ref. 95 with permission
from the PCCP Owner Societies. Panel (b) is adapted from Ref. 331 under the CC BY license. Panel (c) is adapted from
Ref. 227 under the CC BY-NC license.

path that is not encircling the CI point will not add any
additional phase to the wavefunction (Fig. 16a(ii), blue
or yellow paths).

The effect of this Berry phase can be seen in the prob-
ability density of nuclear wavepackets that pass through

the PICI point. Note that even though we have used
the JC model to intuitively explain the Berry phase ef-
fect of the PICI, the actual quantum dynamics simula-
tion95 was performed using a numerically exact simu-
lation to solve the full PF Hamiltonian (see Eq. 148).
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Fig. 16a presents the PICI generated from coupling a
LiF molecule with an optical cavity.95 For a nuclear
wavepacket that is initially uniformly distributed in θ
(Fig. 16a(iii)) which corresponds to a rotational state
with a quantum number J = 0, passing through the
PICI from the left will cause half of the density to en-
circle the CI clockwise and the other half, counterclock-
wise. This causes the two halves to gain phases with
opposite signs, causing interference effects when the
wavepacket branches meet after the PICI point. These
interference effects can be seen in the patterns of the
probability density (Fig. 16a(iii)) where, notably, a node
at θ = π/2 appears after encirclement due to destruc-
tive interference from the Berry phase. Considering a
different initial nuclear distribution with a rotational
state J = 1 (Fig. 16a(iv)) where the probability density
has a much larger amplitude at the parallel (θ = 0) and
antiparallel (θ = π) angles of the light-matter coupling,
the probability density after encirclement has a lack of a
node at θ = π/2 due to constructive interference of the
Berry phase. These particular interference features are
not consistently present if the Berry phase is removed
from the dynamics or if the molecule is prevented from
rotating.95 The presence of the Berry phase is thus an
important feature of photochemical simulations involv-
ing conical intersections, and can also be experimentally
observed when measuring the photo-fragment angular
distribution (PAD) in a recent work of the light-induced
conical intersection for a H+

2 molecule coupled to an in-
tense laser field.334 It is thus possible to experimentally
test the effect of PICI by measuring the PAD, which is
computed in Ref. 95.

The impact of cavity-induced conical intersections on
photodissociation reactions inside optical cavities was
also investigated in the work shown in Fig. 16b, adapted
from Ref. 331. In a photo-dissociation reaction of a LiF
molecule coupled with the cavity, a PICI forms at the
point when |e, 0⟩ and |g, 1⟩ surfaces cross and the an-
gle θ between the transition dipole moment and cavity
vector polarization is π/2 (Fig. 16b(i)). To investigate
the impact of the PICI (and the rotation dynamics as
a whole), the dissociated population as a function of
time was calculated both when including the rotational
dynamics (Fig. 16b(iii), referred to as the 2D model)
and when fixing the angle with the cavity (Fig. 16b(ii),
referred to as 1D model). Further, the number of ini-
tial photonic excitations was varied to understand the
effect of PICI. The dissociated population dynamics be-
tween the 1D and 2D scenarios were different, and this
difference became larger for a larger number of initial
photonic excitations in the cavity.331 This is because
that for a larger photon number n (associated with the
photonic Fock state |n⟩), the non-adiabatic coupling be-
tween the upper and lower polariton surfaces increases,
thus making the effect of the PICI more pronounced
(which is to quickly relax populations from the higher
energy surface to the lower energy surface).

In addition to creating new conical intersections, cou-
pling molecules that have an intrinsic electronic CI to

cavities can split the original CI into two CIs, each
having a mixed character of electronic excitation and
photonic excitation, as described in the work shown
in Fig. 16c, adapted from Ref. 227. As shown in
Fig. 16c(i), when a model pyrazine molecule with an
intrinsic CI between two molecular excited states is cou-
pled to a cavity, such that one of the molecular excited
states experiences light-matter coupling, two CI appear
among the 3 excited state surfaces with properties dif-
ferent from those of either an intrinsic CI or an isolated
PICI (Fig. 16a). The locations of both CIs vary with the
light-matter coupling strength, and as the light-matter
coupling increases (from Fig. 16c(i) to c(ii)), the dis-
tance between these two CIs also increases. This is in
contrast to the individual PICI in Fig. 16a whose lo-
cation is independent of light-matter coupling strength.
This feature of polariton-induced CIs allows for tun-
ability of the CI position and thus a more flexible con-
trol over photochemical reactions that involve polariton-
induced CIs.227 The geometric phase effects caused by
these CIs can be seen in the nuclear probability density
distribution in Fig. 16c(iii)-(iv). The nuclear density is
more spread out when outside the cavity (Fig. 16c(iii))
than when coupled to the photonic mode inside the cav-
ity (Fig. 16c(iv)). This is consistent with the fact that
the cavity coupling causes less energy to be stored in the
vibrational modes and more to be stored in the cavity
photonic mode.227 Additionally, the presence of light-
matter coupling has pushed the polariton-induced CI
closer towards the Franck-Condon position which en-
hances the Berry phase-induced destructive interference
seen at the coupling nuclear coordinate Qc = 0 (not to
be confused with the cavity qc) in Fig. 16c(iv). These
effects ultimately influence the electronic-photonic pop-
ulation dynamics, allowing for cavity control of these
molecular systems that contain intrinsic CIs.

As demonstrated by the theoretical works above,
these cavity-induced CIs can play a major role in the
dynamics of photochemical reactions. The features of
enhanced non-adiabatic coupling and Berry phase offer
new mechanisms for an optical cavity to control photo-
chemical reactivity. With that said, more experimental
work is needed to demonstrate clear evidence of these
cavity-induced CI features and to verify the proposed
theoretical mechanisms of how cavity-induced CIs can
control photochemical reactivity. All of the above ex-
amples are considering a single molecule coupled to the
cavity, whereas the possible collective effect223 of us-
ing PICIs for chemical reactivity will be discussed in
Sec. 6.3.

4.6 Controlling Chemical Reactivity
with Quantum Photon States

Aside from tuning the cavity frequency or light-matter
coupling strength to control polariton photochemistry,
one can take advantage of various initially prepared
quantum mechanical states of the photon, such as Fock
states, coherent states, or squeezed coherent states.
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Preparing and controlling these quantum mechanical
states are mature techniques in the quantum optics
community. These different initial states can have a
strong influence on the subsequent dynamics and on
how the system’s phase space is sampled.85,302

A single cavity photon mode can be described in a
variety of representations. The two most common rep-
resentations are the Fock basis, |n⟩, and the positional
basis of the photon,44,146 |qc⟩ (see Eq. 43 for q̂c). While
the Fock basis is most convenient when considering ini-
tial conditions of single Fock states, the positional ba-
sis is convenient when starting from two related types
of states: coherent and squeezed-coherent states.85,146

The construction of these related states takes advantage
of their property that they have the minimal position-
momentum uncertainty as allowed by the Heisenberg
uncertainty principle.

A coherent state (CS) is defined as335,336

|α⟩ = D̂(α)|0⟩ (177)

where D̂(α) = eαâ
†−α∗â = e−|α|2/2eαâ

†
e−α∗â is the dis-

placement operator (analogous to Eq. 120 where the
second equality comes from the Glauber formula) and
|0⟩ is the vacuum state. By operating the displacement
operator on the vacuum state |0⟩, the coherent state |α⟩
can be expressed as

|α⟩ = D̂(α)|0⟩ = e−|α|2/2
∑
n

αn

√
n!
|n⟩. (178)

The parameter α is a dimensionless complex number
that determines the displacement of the vacuum states
expressed as follows

α = |α|eiϕ =
1√
2

[√
ωc

ℏ
⟨q̂c⟩α +

i√
ℏωc

⟨p̂c⟩α
]
, (179)

and can be related to the expected value of photons in
the cavity through ⟨n⟩ = |α|2. The magnitude of the
displacement is given by |α| and the phase ϕ determines
the composition of the displacement in momentum and
position space.

Further, the CS in the position space representation
is given by

⟨qc|α⟩ =
(ωc

πℏ

)1/4

exp

[(x− ⟨q̂c⟩
2∆qc

)2

+ i⟨p̂c⟩
qc
ℏ

]
(180)

where ⟨q̂c⟩ =
√

2ℏ
ωc

Re[α], ⟨p̂c⟩ =
√

2ℏωc Im[α], ∆qc =√
ℏ

2ωc
, and ∆pc =

√
ℏωc

2 . In the phase space representa-

tion, this can be intuitively visualized as in Fig. 17a(i),
where the X1 =

√
2ωc/ℏqc and X2 =

√
2/ℏωcp values

within one standard deviation of the expectation values
are represented by the shaded circle. This shows how
coherent states equally distribute the x-p uncertainty
across x̂ and p̂.

The squeezed-coherent state (SCS) “squeezes” the x-

p uncertainty shared between x̂ and p̂ such that it still
is the minimum x−p uncertainly allowed by the Heisen-
berg uncertainty principle. These states are defined
as335,337

|α, ξ⟩ = D̂(α)Ŝ(ξ)|0⟩ (181)

where Ŝ(ξ) = e
1
2 ξ

∗â2+ 1
2 ξâ

†2
is the squeezing operator

with a squeezing parameter ξ = |ξ|eiθ being a complex
number. In the position representation, the SCS is ex-
pressed as

⟨qc|ξ, α⟩ = r
(ωc

πℏ

)1/4

exp

[(
qc − ⟨q̂c⟩α

2∆qc

)2

+ i⟨p̂c⟩α
qc
ℏ

]
(182)

where r = (cosh|ξ| + eiθsinh|ξ|)−1/2, ∆qc =√
ℏ

2ωc

[
cosh|ξ|+eiθsinh|ξ|
cosh|ξ|−eiϕsinh|ξ|

]
, and ⟨q̂c⟩α and ⟨p̂c⟩α are the

same expectation values as the corresponding coherent
state with a displacement of α. While this representa-
tion can be difficult to parse at a first glance, additional
intuitive insight is gained by looking at the distribution
of SCS states in phase space as shown in Fig. 17a(ii). As
the SCS name implies, Ŝ(ξ) “squeezes” the probability
distribution of the state in phase space. Instead of equal
uncertainties in X1 and X2, now the distribution takes
an elliptical form and is squeezed exponentially by |ξ| in
a given direction. Additionally, the axes of this ellipse
are rotated by the angle θ (not to be confused with the
incident angle in Fig. 4) such that the uncertainties are
now squeezed in the Y1 and Y2 directions. This creates
a more general class of minimal uncertainty states that
redistribute the uncertainty across different pairs of
observables (position and momentum, photon number
and phase, etc.).

Recent theoretical works85,302 have demonstrated
how starting from one of these minimal uncertainty
quantum photon states inside a cavity can influence po-
lariton photochemistry. In Ref. 85, the authors simu-
late the dynamical evolution of a LiF molecule strongly
coupled to a cavity (See Fig. 17b(i)). Specifically, the
dissociation probability is calculated as a function of
time. In Fig. 17b(ii) they showed that by initializing
the photonic state in a squeezed state (E q. 182) and
the molecule in the excited state |e⟩, thus having the
tensor product state |e⟩ ⊗ |α, ξ⟩ for the hybrid system,
the dissociation pathway of the reaction can be sup-
pressed relative to using |e⟩⊗ |n⟩, which is a Fock state,
as the initial cavity excitation.

Ref. 302, similarly discusses how initializing in a
squeezed state can affect polariton dynamics. In that
work, a LiF molecular is coupled to a cavity, described
by the quantum Rabi model Hamiltonian (Eq. 82).
Fig. 17d presents the dynamical progression (illustrated
by the black arrows) of the polariton system in the posi-
tion representation (with photonic coordinate qc as the
y-axis and nuclear coordinate R as the x-axis) when the
initial photonic condition is set to be either a coher-
ent state or a squeezed state. The coherent state ex-
hibits the standard oscillator behavior that is a “trade-
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Figure 17: Photon Mode Initial State. (a) Phase space illustration of (i) a coherent state and (ii) a squeezed state with
a squeezing parameter ξ = |ξ|eiθ, where the shaded areas depict the phase space area within one standard deviation of the
expectation values. (i) Schematic of the dynamics on the polaritonic PES for a LiF molecule inside a cavity initialized with a
quantum photon state. (ii) Dissociation as a function of time when the system is initialized with a Fock state (red), an SCS
with |α| = 2 (blue), and an SCS with |α| = 3 (green) compared to outside the cavity (grey). (c) Time evolution (denoted
by black arrow) of the photonic displacement for the polariton system of a LiF molecule in a cavity initialized with either
a coherent state or a squeezed state. (d) Shows the final excited state population with a system initialized with a squeezed
state as a function of the phase and, ϕ, and squeezing rotation, θ. (e) Shows the final excited state population with a system
initialized with a squeezed state as a function of both r and θ compared to the free space limit (black). Panel (b) is adapted
with permission from Ref. 85. Copyright 2018 American Chemical Society. Panel (c)-(e) are adapted with permission from
Ref. 302. Copyright 2018 American Physical Society.

mark” of these states. The squeezed coherent states,
on the other hand, evolve in a “breathing” manner,
where the expectation value of the photonic coordinate
remains constant but the uncertainty oscillates. Fig. 17e
presents how the excited state final population changes
as a function of the quantum phase term in α, ϕ, and
the phase term of ξ, θ, for squeezed states of a constant
r = |α| = 1. Further, Fig. 17f presents that if α is
held as a constant, varying r and θ can also dramati-
cally change the excited state final population. These
theoretical investigations85,302 with squeezed coherent
states demonstrate how using these minimal uncertainty
states (quantum photonic states) can affect polariton
dynamics. In these examples, the reactivity of the LiF
molecule changes due to the photonic state introduced
in the cavity, showing how for a given cavity-molecule
system the dynamics can be altered by introducing dif-
ferent photonic states. If can be realized experimentally,
this will be a prime example of using tuning knobs in
quantum optics to control chemistry.

4.7 Influence of Cavity Loss on Polari-
ton Photochemistry

Many of the aforementioned works in polariton photo-
chemistry have assumed that the optical cavity of study
has a perfect internal reflectance with no loss of electro-

magnetic energy to the outside world. In reality, the
photonic modes inside every optical cavity have some
non-zero coupling with the photonic modes outside the
cavity, which causes cavity loss to occur. This cavity
loss reduces excitation energy in the molecule-cavity
system and can have significant effects on the outcomes
of polariton-mediated reactions. Thus it is important
to highlight the effects that cavity loss can have on sim-
ulations of polaritonic systems.

The starting point of a rigorous description of cav-
ity loss is to describe the loss as an interaction of the
cavity modes with an environment of external far-field
photonic modes. The total Hamiltonian of a system
plus its environment can be written as

ĤT = ĤS ⊗ ÎE + ÎS ⊗ ĤE + ĤI, (183)

where ĤS is the system Hamiltonian, ÎS is the iden-
tity in the system Hilbert space HS, ĤE is the envi-
ronment Hamiltonian, ÎE is the identity in the envi-
ronment Hilbert space HE, and ĤI is the interaction
Hamiltonian between the system and the environment.
For cavity QED systems, ĤS is the PF Hamiltonian
ĤPF (Eq. 104) while ĤE describes the far-field photon
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Figure 18: Cavity Loss in Polariton Photochemistry. (a) (i) Polaritonic potential energy surfaces for an asymmetric
isomerization model at the Jaynes-Cummings level with an uncoupled ground state |g, 0⟩ (dark blue). The cavity frequency
is ℏωc = 1.632684 eV with coupling strength ℏgc = 0.136 eV. Purple color indicates molecular excited character while light
blue indicates photonic character for the upper (UP) and lower (LP) polaritons. (ii) Population dynamics of the diabatic
states (|g, 0⟩ in dark blue, |g, 1⟩ in magenta, |e, 0⟩ in light blue) for a cavity without loss. The solid lines are exact quantum
dynamics while the dotted lines are computed using the stochastic mixed quantum-classical L-MFE method. The |g, 0⟩ state
does not become populated since it does not couple to the polariton states and there is no loss channel. (iii) Same as (ii) but
with a cavity loss rate of κ = 1 meV. The |g, 0⟩ state becomes populated due to the loss channel while both excited state
populations (|e, 0⟩ and |g, 1⟩) loss population. Note that the |g, 0⟩ state gains population at a higher rate when the |g, 1⟩
state is more populated due to the use of the phenomenological jump operator L̂ = â. (b) (i) Potential energy surfaces of
the ground and polaritonic states. Representative examples of nuclear wavepackets at different times (0 fs, 10 fs, and 27 fs)
are overlaid to demonstrate typical wavepacket behavior when cavity loss is present. Note that some of the nuclear density
dissociates at later times which is not shown. (ii) Light-matter coupling-induced loss rate as a function of bond distance R
and plasmonic cavity frequency ωpl. The loss rate is larger where the photonic |g, 1⟩ state intersects the molecular |e, 0⟩ state
(white dashed line) and is maximized for the lowest cavity frequency that lets the diabatic states intersect (white dotted
line). (iii) Dissociation probability as a function of time and ωpl. The dissociation probability is largest near the lowest cavity
frequency that lets the diabatic states intersect (white dotted line). (c) (i) Potential energy surfaces of the diabatic states
of a MgH+ molecule coupled to a cavity. There are multiple electronic states present (ground state |X⟩ and excited states
|A⟩, |B⟩, and |C⟩) along with multiple Fock states ranging from n = 0 to n = 2 within the plotted range of energy. Cavity
loss channels are shown as downward arrows, indicating several different possible paths for loss-induced population transfer
to occur. (ii) The remaining population (not dissociated) at the steady state for a range of mean cavity lifetimes and electric
field strengths Ec (which is proportional to the light-matter coupling strength gc). The remaining population shows significant
variability and non-monotonicity over a wide range of lifetimes and coupling strengths. (d) (i) Diagram of a uracil molecule
experiencing photodamage from UV irradiation outside a cavity (top) and being photoprotected by coupling to a plasmonic
cavity (bottom). The photoprotection of the uracil molecule is caused by the photorelaxation induced by cavity coupling. (ii)
The rate of relaxation from the excited state to the ground state inside the cavity relative to outside the cavity (speed-up
factor η) for a range of Rabi splittings Ωc and cavity loss rates γ. A higher speed-up factor allows for more photoprotection
from UV photodamage. Panel (a) is adapted from Ref. 338 with permission. Copyright 2022 American Institute of Physics.
Panel (b) is adapted from Ref. 305 with permission. Copyright 2021 American Institute of Physics. Panel (c) is adapted
from Ref. 303 with permission. Copyright 2020 American Institute of Physics. Panel (d) is adapted from Ref. 339 under the
CC-BY-NC-ND license.

modes as free bosons340,341

ĤE =
∑
k

ℏωk(b̂†k b̂k +
1

2
), (184)

where b̂†k and b̂k are the raising and lowering operators,
respectively, for far-field mode k. The interactions be-
tween the cavity mode and the far-field modes can be
described by the Gardiner-Collett interaction Hamilto-
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nian340,342,343 as

ĤI = (â† + â) ⊗
∑
k

ℏgk(b̂†k + b̂k), (185)

where the coupling strength between the cavity mode
and the kth environmental mode is gk, characterized by
a spectral density. This Hamiltonian can be rigorously
derived from QED first principles and has been used to
investigate polariton quantum dynamics in a dissipative
cavity.341,344–347

While there may exist some important non-
Markovian effects caused by the explicit cavity-bath
description, most often one is only concerned with the
primary effect of cavity loss on the molecule-cavity sys-
tem which is incoherent decay of excited population,
which can be described using Markovian dynamics. As
such, most discussions of cavity loss in the literature
are based on the Lindblad master equation which is the
most general description of the Markovian dynamics of
open systems.348,349

The Lindblad master equation incorporates jump op-
erators to describe the dissipative dynamical effects of
the implicit bath. Most polariton literature up to this
point that have described cavity loss with the Lindblad
formalism have used the phenomenological jump oper-
ator305

L̂S = â, (186)

to describe cavity loss. This jump operator is an ap-
proximation of the rigorously derived jump operators
that describe jumps between the energy eigenstates of
the system and include thermal effects. Regardless, the
dynamics of the rigorously derived jump operators are
typically well approximated by those of the phenomeno-
logical one for polariton systems.345,346

Using one of the single photon mode cavity QED
Hamiltonians in Sec. 2 as the system Hamiltonian ĤS

and the jump operator L̂S in Eq. 186 to describe cav-
ity loss, the Lindblad master equation for single mode
polariton systems with cavity loss is as follows

dρ̂S
dt

= − i

ℏ
[
ĤS, ρ̂S

]
+ Γ

(
âρ̂Sâ

† − 1

2

{
â†â, ρ̂S

})
, (187)

where the anticommutator term − 1
2

{
â†â, ρ̂S

}
causes

population decay as well as decoherence among states,
whereas the âρ̂Sâ

† term (refilling term) makes the pop-
ulation reappear in the new state that the decay leads
to (in this case, the state with one fewer photons). In
order to make connections to other methods of propa-
gating loss, the Lindblad master equation can be written
in an equivalent form as

dρ̂S
dt

= − i

ℏ

(
Ĥeff ρ̂S − ρ̂SĤ

†
eff

)
+ Γâρ̂Sâ

†, (188)

where the effective Hamiltonian is

Ĥeff = ĤS − i
ℏΓ

2
â†â. (189)

The expression in Eq. 188 has been used in the devel-
opment of the stochastic Schrödinger equation350–352

which converges to Lindblad dynamics in the limit of
large trajectory number. Alternatively, some recent
works in cavity QED149,263,339,353–356 have made the
approximation to completely ignore the refiling term
Γâρ̂Sâ

† and approximate the Lindblad dynamics as the
time-dependent Schrödinger equation (TDSE) with the
complex Hamiltonian Ĥeff . In situations where the
refilling term is negligible, this approximation scheme
matches the dynamics of the Lindblad master equation.
However, when the refiling term is significant, the Lind-
blad dynamics must be included in full, either by propa-
gating the density matrix or by using a stochastic wave-
function method.338,350–352

The consequences of this cavity loss have been demon-
strated in a number of works on polariton photochem-
istry.61,213,263,303,305,325,338,339 The most pronounced ef-
fect of cavity loss, the reduction of excited state pop-
ulation with photonic character, is demonstrated in
Fig. 18a, adapted from Ref. 338. Shown in Fig. 18a(i),
a model isomerization reaction in a perfect cavity
(Fig. 18a(ii)) undergoes its excited state dynamics while
maintaining a total excited state population of 1.0.
In contrast, when there is a non-zero cavity loss rate
(Fig. 18a(iii)), both the upper and lower polariton states
lose population to the ground state. This loss of excited
state population generally reduces the ability of a sys-
tem to undergo reactions on excited surfaces. Conse-
quentially, a significant cavity loss rate often, but not
always, reduces the ability to enhance excited state re-
action rates through light-matter coupling.

Cavity loss may also enhance the rate of photochem-
ical reactions as demonstrated in Fig. 18b(i), adapted
from Ref. 305. In this H2 dissociation model, the molec-
ular excited state has a broad potential well that resists
photodissociation while the molecular ground state has
a potential well that resists dissociation near the equi-
librium bond distance but allows dissociation at farther
nuclear configurations (Fig. 18b(i)). With the pres-
ence of light-matter coupling and cavity loss, a nuclear
wavepacket starting on the molecular excited surface
can transfer to the |g, 1⟩ state and experience cavity
loss to the ground state while maintaining the momen-
tum in the direction of dissociation it gained while on
the molecular excited surface. Afterward, part of this
wavepacket can dissociate on the molecular ground state
potential. As shown in Fig. 18b(ii), the loss rate of
the excited state due to coupling with the lossy pho-
tonic state is most pronounced where the two surfaces
intersect and is maximal for the cavity frequency shown
in Fig. 18b(i) which corresponds to the dashed white
line in Fig. 18b(ii). This large loss rate along with the
wavepacket dynamics mentioned previously showcases
significant photodissociation probability (Fig. 18b(iii))
when the cavity frequency is near the resonance point
shown in Fig. 18b(i), and is much smaller for other cav-
ity detunings. This demonstrates the ability of cavity
loss to take advantage of the curvatures of both the
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molecular ground and excited states to encourage a re-
action that was resisted outside the cavity.

However, when multiple excitation manifolds are ac-
cessible, the effects of cavity loss become more compli-
cated, as demonstrated by the work shown in Fig. 18c
(adapted from Ref. 303). The potential energy sur-
faces considered (Fig. 18c(i)) in this model of MgH+
coupled to a cavity span states with different num-
bers of excitations, including doubly excited states com-
posed of a molecular excitation and a photonic excita-
tion (states |1, A⟩ and |1, B⟩) or two photonic excita-
tions (state |2, X⟩). These doubly excited states can
undergo cavity loss (indicated by downward arrows)
and incoherently transfer population to the singly ex-
cited manifold. The combination of these loss channels
along with the multiple cavity-induced avoided cross-
ings leads to non-monotonic effects when the cavity loss
rate or light-matter coupling strength are varied. The
remaining non-dissociated population after photoexci-
tation (Fig. 18c(ii)) was found to be smaller with a cav-
ity lifetime of 10 fs than with a cavity lifetime of 1 fs
or 1000 fs. The remaining population did generally in-
crease with larger electric field strength, but this was
not always the case since there are multiple local max-
ima and minima in the remaining population for longer
lifetimes above 1000 fs. These nuanced, non-monotonic
features highlight the importance of using detailed the-
oretical calculations to predict the optimal cavity pa-
rameters for controlling photochemical reactions.

Additionally, cavity loss may protect molecules from
photodamage by altering the time the photoexcitation
spends in a nuclear configuration prone to damage. In
the work shown in Fig. 18d, adapted from Ref. 339, a
photorelaxation model is considered where a molecule
is susceptible to photodamage when in a nuclear regime
where intersystem crossing may occur (Fig. 18d(i)).
Outside the cavity, the photoexcitation has some prob-
ability to transfer to a conical intersection regime which
allows relaxation and prevents photodamage. When
this reaction is coupled to a lossy cavity, a speed-up
of this relaxation occurs (Fig. 18d(ii)) which enhances
photoprotection. This speed-up is maximized at a par-
ticular Rabi splitting and a particular cavity loss rate.
This result stands in contrast to the typical idea that a
reaction rate change would be maximized or minimized
at either very large or very small cavity loss rates.

The preceding discussion on the effects of cavity loss
on photochemical reaction demonstrates that while cav-
ity loss may sometimes be a hindrance to enhancing
reactivity on polaritonic surfaces, it may also serve to
improve the desired reactivity and even act as another
tunable knob to control photochemical reactivity light-
matter coupling.

5 Vibrational Strong Couplings in Po-
lariton Chemistry

Recent experiments4,33,108,110,112,119 have demon-
strated that coupling molecular vibrations to quan-
tized radiation modes inside an optical cavity can lead
to enhancement112,119 or suppression4,33,108,110 of the
rate constant for a reaction in the electronic ground
state. Further, it has been shown that this vibra-
tional strong coupling (VSC) regime can be leveraged
to selectively break chemical bonds,4 thus effectively
realizing mode-selective chemistry.357,358 Interestingly,
such modifications of chemical reactions operate “in
the dark”,357 requiring no external source of photons
(laser excitation), unlike the polariton photochemistry
experiments summarized in Fig. 12. This new strategy
in the VSC regime, if feasible, will allow one to bypass
some intrinsic difficulties (such as intramolecular vibra-
tional energy transfer) encountered in mode-selective
chemistry that uses IR excitations to tune chemical re-
activities,359–362 offering a paradigm-shift of synthetic
chemistry through cavity-enabled bond-selective chem-
ical transformations.4,33,357

On the other hand, recent experimental works have
also reported possible discrepancies with negligible
cavity modification to ground-state chemical kinet-
ics.117,118 And theoretically, we do not have a satisfac-
tory answer to explain these observed modified reactiv-
ities, despite recent progress.69,363,364 In the following
section, we will provide a comprehensive overview of the
existing experimental and theoretical works that have
attempted to solve the mysteries of vibrational polari-
ton chemistry.

When molecular vibrational excitations are coupled
to the optical cavity, one generates the vibrational po-
laritons, as illustrated in Fig. 19a, where a vibrationally
excited state with 0 photons in the cavity |v1, 0⟩ (black
energy levels) hybridizes with the ground vibrational
state with 1 photon in the cavity |v0, 1⟩ (red energy
levels) that is in resonance to |v1, 0⟩. The resulting
hybridized states |±⟩ (green and blue energy levels)
that are energetically separated by the Rabi-splitting
ΩR (with details of the Rabi splitting provided in Sec-
tion 5.1, Eq. 194). The Rabi-splitting is spectroscopi-
cally visible if it is larger than the rates of other com-
peting dissipative processes (typically estimated from
the spectral line-widths), such as solvent dissipation or
cavity loss, and consequently, the light-matter coupling
is said to be in the vibrational strong coupling regime.
Note that this is only a schematic based on the JC type
of model, where we only considered a single vibrational
DOF coupled to a single cavity mode. In actual ex-
periments, an estimated N = 106 ∼ 1010 molecules are
collectively coupled to the Fabry–Pérot cavity for each
cavity mode.36,37,106 Thus, one needs to use the Tavis-
Cummings (TC) model (see Sec. 1.2) to explain the VSC
phenomena, or more rigorously, use the ĤGTC type of
the Hamiltonian in Eq. 102.

The vibrational strong coupling (VSC) regime has
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Figure 19: Forming vibrational polaritons and experimental observation of cavity modified of ground state
chemical kinetics. (a) Schematic diagram of the formation of vibrational polaritons |±⟩ by hybridizing vibrational excited
state |v1, 0⟩ and cavity excited state |v0, 1⟩. (b) Suppression of chemical kinetics: Chemical rate constant as a function of cavity
photon frequency inside (red squares) and outside cavity (blue squares) and IR spectra of the molecule cavity hybrid system
(black solid line). (c) Enhancement of chemical kinetics: Chemical rate constant as a function of cavity photon frequency
inside (filled blue circles) and outside cavity (filled red circles). (d) Experimental demonstration of mode-selectivity inside the
cavity for chemical reaction with two possible products (see top panel) labeled as 1 and 2. Pink and violet squares represent
the relative yield of products 1 and 2 respectively. Panel (b) is reproduced with permission from Ref. 108. Copyright 2016
Wiley-VCH. Panel (c) is reproduced with permission from Ref. 112. Copyright 2016 Wiley-VCH. Panel (d) is reproduced
with permission from 4. Copyright 2019 American Association for the Advancement of Science.

been achieved and the Rabi-splitting has been exper-
imentally observed.33,34,108,110,111,365 As expected from
the Tavis-Cummings (TC) model (see Sec. 1.2), the
Rabi-splitting linearly increases with

√
N . This collec-

tive effect has been verified experimentally Fig. 20a-b,
where the Rabi splitting measured from the transmis-
sion spectra linearly depends on the

√
N/V (see Eq. 17),

which means linearly depends on the square root of con-
centration

√
C.

Fig. 19b, adapted from Ref. 108, shows the trans-
mission spectra (black solid line) that clearly indicate
the upper and lower polariton peaks that correspond
to the upper polariton state |+⟩ and lower polariton
state |−⟩, respectively. More importantly, when the re-
action indicated in panel (b) occurs inside an optical
cavity, it was found108 that the ground state rate con-
stant of the reaction (red squares and dashed line) is
suppressed by 4-5 times, compared to the rate constant
of the same reaction outside the cavity (blue squares).
This suppression of the rate constant will only hap-
pen under the “resonant condition” when the cavity
frequency is close (in resonance) with a molecular vi-
brational frequency.4,108,110 Specifically, in Fig. 19b, the
resonant vibrational frequency refers to the Si-C vibra-
tional stretching frequency.108 Further, Fig. 19b demon-
strates the key features of this type of VSC experiment,
with the width and shape of the transmission spectra
(black solid line) being similar to the cavity-modified
rate constant (red dashed line). Similar studies that
have observed cavity suppression include Ref. 366 that

studied Prins cyclization and Ref. 367 that very recently
studied the urethane addition reaction.

Note that the experimental condition for the “reso-
nant condition” is specifically referred to the case at
the incident angle θ = 0, where the cavity frequency
matches a particular vibrational frequency.4,108,368 This
is indicated by the schematics in Fig. 4b. The setup
illustrated in Fig. 4c, on the other hand, has a finite de-
tuning between light and matter at θ = 0. Even though
it also has a resonant condition (zero detuning) at some
finite θ, there is no VSC modification of the rate con-
stant observed experimentally for this case.4

Meanwhile, other experiments show a resonant en-
hancement of ground state chemical kinetics.112,119 For
example, as shown in Fig. 19c adapted from Ref. 112,
the reaction rate constant is enhanced and peaks at a
maximum when the photon frequency is close to a sol-
vent vibrational frequency (which is the C=O stretching
frequency of the EtOAc solvent). On the other hand, a
recent work117 has observed much smaller (≈ 1.5 times
enhancement) rate enhancement for the same reaction
under VSC, conflicting the results in Ref. 112. Interest-
ingly, their results show that modification of the chem-
ical reaction occurs for non-zero detunings.117

More interestingly, when there are two competing re-
action pathways outside the cavity, it has been demon-
strated that coupling them to the cavity can achieve
mode-selective chemical reactivity.4 That is, the cou-
pling of molecular vibrations to the cavity can selec-
tively favor one chemical reaction over another, com-
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pletely reverting the original selectivities compared to
the situation outside the cavity. This mode selectiv-
ity is shown in Fig. 19d, adapted from Ref. 4, where
the yield of product 2 exceeds that of product 1 inside
an optical cavity when tuning the cavity frequency to
be resonant with a variety of bond frequencies. This
is in contrast to the situation outside the cavity (or in
the off-resonant scenario with a very large cavity fre-
quency ωc ≈ 5000 cm−1), where product 1 is formed
more than product 2. In a similar experiment, the site-
selective reaction of the aldehyde over the ketone in
4-acetylbenzaldehyde is achieved by automated cavity
tuning to maintain optimal VSC of the ketone carbonyl
stretch during the reaction.369

Experimental works have attempted to provide physi-
cal insights by computing the modification of thermody-
namic parameters.33,119 Ref. 33 investigates the desily-
lation of 1-phenyl-2-trimethylsilylacetylene (PTA), the
same reaction studied in Ref. 110 which is shown in
Fig. 19, and extracts thermodynamic parameters as-
suming that the chemical rate is given by the transition
state expression (Eyring theory)

k =
kBT

h
e−β(∆H‡−T∆S‡). (190)

Based on the simple Eyring theory in Eq. 190, it gives

ln
k

T
= −∆H‡

kB
· 1

T
+

∆S‡

kB
+ ln

kB
h
. (191)

The effective cavity modification of reaction Entropy
∆S‡ and reaction Enthalpy ∆H‡ are extracted from
the chemical rate constant k, measured experimentally.
Fig. 20c presents ln(k/T ) as a function of 1/T under
VSC and compares it to the non-cavity scenario. The
modification of the slope of ln(k/T ) indicates that ∆H‡

is being modified (see Eq. 191) under VSC, and the
changing of the y-intercept indicates that the reaction
Entropy ∆S‡ is also modified (see Eq. 191) by VSC.

The modification of ∆H‡ and ∆S‡ under VSC as a
function of Rabi-splitting ΩR (due to the change of the
concentration C = N/V in the experiment) is shown in
Fig. 20d and f, respectively. This analysis indicates that
the free-energy barrier ∆G‡ = (∆H‡ − T∆S‡) is being
modified under VSC inside the cavity, which is shown
in Fig. 20e that presents ∆(∆G‡) = ∆G‡

c − ∆G‡
0 as

a function of ΩR with corresponding chemical rate con-
stant shown in Fig. 20g. Interestingly, the chemical rate
modification in Fig. 20g shows a non-linear relationship
between Rabi-splitting ΩR and rate constant k. There-
fore, while Rabi-splitting is directly increases with

√
N ,

the modification of the chemical rate assumes a more
complicated relationship. The full theoretical under-
standing and the physical origin of how cavity modifies
∆S‡, ∆H‡ and ∆G‡ remains unclear and is a subject
of ongoing theoretical research. Note that if one hy-
pothesizes that an unknown mechanism forces the up-
per or lower vibrational polariton states to be a gate-
way of VSC polaritonic chemical reaction,370 then the

activation energy change should shift linearly371 with
ΩR. The experimental results in Fig. 20e, on the other
hand, demonstrate a non-linearity of reaction barrier.33

Figs. 19 and 20 summarize the basic features of the ob-
served VSC modifications on chemical rate constants.
Recent experiments also suggest that the symmetry of
the vibrational normal mode coupled to the cavity mode
also plays a role in modifying chemical reactivity372

and leads to the modification of stereo-selectivity.113

Although it is not clear if the symmetry plays a key role
in all VSC reactivities or just these specific ones.113,372

Recent theoretical investigations primarily aim to ex-
plain the following key features of the VSC-modified
(adiabatic) ground-state chemical reaction. (i) cav-
ity frequency dependence of the VSC-modified chem-
ical rate: It is suggested that when the photon fre-
quency is close (so-called resonant photon frequency) to
some characteristic molecular vibrational frequency the
chemical reaction kinetics is strongly modified. Mean-
while, when the photon frequency is far from these
molecular vibrational frequencies (so-called off-resonant
photon frequency) the chemical kinetics reduces to that
of the cavity-free case. (ii) The collective regime of the
VSC-modified reactivities: experimental studies that
demonstrate cavity-modified ground-state chemical re-
activity by coupling an ensemble of molecules to cavity
photon modes. The Rabi-splitting that is formed due
to collective light-matter coupling between molecular
vibrations and cavity quantized radiation mode scales
with

√
N , where N is the number of vibrational de-

grees of freedoms. It is suggested that the cavity mod-
ification of a chemical reaction also scales with

√
N . It

is worth mentioning that for thermally activated non-
adiabatic reactions both collective and resonant modi-
fication of chemical kinetics has been theoretically ob-
served.36,70,84

In the following, we review several recent theoretical
and computational works that have attempted to pro-
vide insights into cavity-modified ground-state chemical
kinetics. In Sec. 5.1, we introduce the model Hamilto-
nian for the simplest scenario, a single molecule coupled
to a single cavity photon mode. Sec. 5.2 shows why one-
dimensional transition state theory (TST) predicts neg-
ative results of the VSC reactivities. Then in Sec. 200,
we review the Grote-Hynes rate theory,373,374 and in
Sec. 5.4 we apply this theory in the context of VSC,
which shows the cavity frequency dependence of chem-
ical reactivity.14,69 In Sec. 5.5 we review recent works
that demonstrate that cavities can resonantly enhance
ground state chemical reactivity363,375 if solvent-solute
interactions are weak (such that the reaction is under
the Kramers under-damped regime). In Sec. 5.6, we re-
view theories that show how IR-frequency cavities can
modify ground-state non-adiabatic electron transfer re-
actions by directly coupling to the charge transfer tran-
sition dipole. In spite of the fact that all experimentally
documented VSC-modified reaction rate constants fall
under the regime of collective coupling, in this section,
we will only review theoretical works that operate in
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the reaction, point to structural changes in the TS under 
VSC. With more experiments and theoretical understand-
ing about the TS changes under strong coupling, it should 

be possible to predict the catalytic activity and the product 
selectivity of reactions controlled by light–matter hybrid 
states.

Figure 3: Variation of thermodynamic parameters of as a function of Rabi splitting energy.
Plots showing the changes in (A) the enthalpy of activation and (B) entropy of activation (T∆S‡, T = 298 K) under VSC (red squares). The blue 
circles represent the corresponding noncavity values for the various CPTA shown in top axis. (C) Shows the difference between the free energy 
of activation under VSC with increasing ħΩR at normal incidence and the noncavity situation at the same CPTA. (D) The decrease in the ratio of 
the reaction rates at 25°C under VSC for various values of ħΩR relative to the noncavity situation. The dashed lines are guides to the eye.

Figure 4: Vibrational strong coupling modifies the reactive landscape to a dissociative path. 
Schematic illustration of possible transition states under (A) noncavity and (B) VSC.
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compensate each other. The upward trend of ∆(∆G‡) with 
the increase of ħΩR is representative of the higher energy 
requirement for the desilylation under VSC compared to 
the noncavity and leads to the retarded reactivity up to a 
factor 4.5 as shown in Figure 3D and as reported earlier [3].

It is remarkable that although the changes in the ther-
modynamic parameters follow the Rabi splitting, their 
magnitude is much greater than the VSC induced ħΩR. 
This indicates that the effect of VSC is not only an ener-
getic one on the potential energy surface leading to the 
products, it must also imply a change in reaction mecha-
nism, which is confirmed by the evolution of ∆H‡ and ∆S‡ 
as discussed elsewhere [3]. It is interesting to see that the 
VSC has a retarding effect on the reaction, which could be 
understood by looking into the formation and organisa-
tion of the TS of the rate-limiting step.

The thermodynamic parameter ∆H‡ mostly represents 
the reorganisation energy requirement for the forma-
tion of the TS, and ∆S‡ primarily indicates the degree of 
organisation of the TS [35]. Under ambient conditions, the 
reaction studied here proceeds through a pentacoordinate 
intermediate and follows an associative mechanism with 
an ordered TS [35–37]. The lower value of ∆H‡ (30 ± 4 kJ 
mol−1) and the large negative value of T∆S‡ (−54 ± 6  kJ 
mol−1, T = 298 K) for the noncavity experiments agree well 
with the associative mechanism and with a TS that is more 

reactant/intermediate-like as schematically displayed in 
Figure 4A. Interestingly, the thermodynamic data show 
that the reaction proceeds through a more product-like 
TS as shown in Figure 4B under VSC. The dissociative TS 
requires higher energy as it is more bond-breaking, and it 
is less strained because of the tetrahedral-like structure. 
This could mean that the intermediate generated under 
VSC is easier to form but more stable than the noncavity 
case either by a charge stabilisation or by anisotropic inter-
actions induced by light–matter coupling. For example, 
mode selective chemistry experiments have shown that TS 
control of the reaction can be modulated by anisotropic 
forces either to enhance or suppress a particular reaction 
path [38]. In other words, the role of strong coupling could 
be more important in determining the position and struc-
ture of the TS as shown in recent experimental [6, 8] and 
theoretical studies [23, 24].

In summary, we have shown that the thermodynamic 
parameters of a chemical reaction under VSC are indeed 
dependent on the strong coupling strength. This further 
illustrates that the polaritonic states are delocalised over 
all the molecules involved in the strong coupling and act 
collectively, even though the reactions are ultimately local-
ised on single molecules. The observed changes in chemi-
cal dynamics of the present system, despite the relatively 
weak Rabi splitting energy compared to the TS energy of 

Figure 2: Eyring plots of reaction under VSC and noncavity conditions.
(A–F) Plots of reaction rate as a function of temperature under VSC (red diamonds) for the various Rabi splitting energies and the 
corresponding plot for noncavity reactions (blue squares). The different values of ħΩR are shown in the plots. Least-squares method was 
used to fit the data, and the goodness of the fit was assessed based on the coefficient of determination (R2) value. For each fit, R2 value 
was ≥0.95.
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visible as split vibrational modes separated by the Rabi 
splitting energy (ħΩR) in the absorption spectrum of the 
molecule. The formation of polaritonic states is schemati-
cally shown in Figure 1A. The coupling strength, ħΩR, is 
often decisive in the modification of molecular properties, 
and its magnitude for a molecule can be calculated with 
the Jaynes–Cummings two-state model, which reduces to 
(1) in the absence of any dissipation:
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where d is the transition dipole moment of the molecule 
(which is determined by the derivative of the permanent 
dipole moment of the vibrational mode), ħω is the optical 
resonance, ε0 is the vacuum permittivity, ν is the volume 

of the electromagnetic mode, and nph gives the number 
photons involved in the strong coupling. Detailed descrip-
tion of strong light–matter coupling, and its impact on 
molecular and material properties can be found in [1, 
27–33]. For discussions specific to the physics of VSC, 
the reader is referred to [11] and [16]. The last part of  
(1) points out that ħΩR has a residual value known as 
vacuum Rabi splitting energy even in the absence of real 
photons. In other words, the zero-point energy fluctua-
tions of the cavity enable the formation of light–matter 
hybrid states in the dark. The experiments reported here 
are carried out under this regime, such that the weak IR 
light used to intermittently probe the system does not 
increase the ħΩR in this collective coupling condition. The 
magnitude of ħΩR is varied only when the number of mole-
cules (N) involved in the coupling process is changed. This 
is because the volume of a single electromagnetic mode 
can accommodate a large number of molecules. The wave 
functions of the hybrid states are delocalised over all the 
molecules interacting with the cavity mode, and there-
fore the R ,N v CΩ ∝ =!  where C is the concentration 
of the molecule. This scenario is schematically shown in 
Figure 1A with VSC of PTA as an example.

2   Results and discussion
The desilylation of PTA (Supplementary Material, 
Figure S1) was chosen as the model reaction for the present 
study. The VSC of the Si–C stretching vibrational mode 
(νSi−C; 860 cm−1, blue curve in Figure 1B) of PTA has shown 
to retard the Si–C bond scission dynamics [3], prompting 
us to do a detailed thermodynamic study, varying the ħΩR. 
Vibrational strong coupling of the νSi−C of PTA is achieved 
using a Fabry–Pérot cavity assembled in a temperature-
controllable and demountable IR cell (purchased from 
Specac) equipped with holes to inject the liquids. An air-
filled Fabry–Pérot cavity (empty cavity) is built in the IR 
cell by placing a Mylar spacer (6 ± 1 µm thick with a hollow 
central region) on top of an Au-coated ZnSe window 
(bottom mirror), which is then covered by a top mirror 
of Au sputtered on a ZnSe substrate having an inlet and 
outlet hole for sample injection. To protect the Au from the 
reactants, a 200-nm-thick SiO2 (glass) was deposited on 
top of the Au mirrors. The IR cell is then closed by tighten-
ing the screws on the top lid. Such an empty cavity has 
many equally spaced modes in the IR whose periodicity 
is determined by the path length of the cavity (Figure S2). 
Using a screwdriver, the empty cavity path length is then 
fine-tuned by adjusting the screws on the cell such that 

Figure 1: Formation of polaritonic states and VSC of Si–C stretching 
modes of PTA.
(A) Schematic illustration of the formation of polaritonic states 
P+ and P− and the modulation of Rabi splitting energy as the 
concentration of PTA (CPTA) is varied. (B) FT-IR transmission spectra 
showing the vibrational modes of PTA in methanol (blue curve) and 
the Rabi splitting corresponding to the VSC of the Si–C stretching 
modes as a function of CPTA. The shaded region shows the width of 
the Si–C stretching vibration, and the dotted lines are guide to the 
eyes. (C) The plot showing the linear dependence of Rabi splitting 
energy on the square root of CPTA.
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(which is determined by the derivative of the permanent 
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resonance, ε0 is the vacuum permittivity, ν is the volume 

of the electromagnetic mode, and nph gives the number 
photons involved in the strong coupling. Detailed descrip-
tion of strong light–matter coupling, and its impact on 
molecular and material properties can be found in [1, 
27–33]. For discussions specific to the physics of VSC, 
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Figure 1A with VSC of PTA as an example.

2   Results and discussion
The desilylation of PTA (Supplementary Material, 
Figure S1) was chosen as the model reaction for the present 
study. The VSC of the Si–C stretching vibrational mode 
(νSi−C; 860 cm−1, blue curve in Figure 1B) of PTA has shown 
to retard the Si–C bond scission dynamics [3], prompting 
us to do a detailed thermodynamic study, varying the ħΩR. 
Vibrational strong coupling of the νSi−C of PTA is achieved 
using a Fabry–Pérot cavity assembled in a temperature-
controllable and demountable IR cell (purchased from 
Specac) equipped with holes to inject the liquids. An air-
filled Fabry–Pérot cavity (empty cavity) is built in the IR 
cell by placing a Mylar spacer (6 ± 1 µm thick with a hollow 
central region) on top of an Au-coated ZnSe window 
(bottom mirror), which is then covered by a top mirror 
of Au sputtered on a ZnSe substrate having an inlet and 
outlet hole for sample injection. To protect the Au from the 
reactants, a 200-nm-thick SiO2 (glass) was deposited on 
top of the Au mirrors. The IR cell is then closed by tighten-
ing the screws on the top lid. Such an empty cavity has 
many equally spaced modes in the IR whose periodicity 
is determined by the path length of the cavity (Figure S2). 
Using a screwdriver, the empty cavity path length is then 
fine-tuned by adjusting the screws on the cell such that 

Figure 1: Formation of polaritonic states and VSC of Si–C stretching 
modes of PTA.
(A) Schematic illustration of the formation of polaritonic states 
P+ and P− and the modulation of Rabi splitting energy as the 
concentration of PTA (CPTA) is varied. (B) FT-IR transmission spectra 
showing the vibrational modes of PTA in methanol (blue curve) and 
the Rabi splitting corresponding to the VSC of the Si–C stretching 
modes as a function of CPTA. The shaded region shows the width of 
the Si–C stretching vibration, and the dotted lines are guide to the 
eyes. (C) The plot showing the linear dependence of Rabi splitting 
energy on the square root of CPTA.
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the reaction, point to structural changes in the TS under 
VSC. With more experiments and theoretical understand-
ing about the TS changes under strong coupling, it should 

be possible to predict the catalytic activity and the product 
selectivity of reactions controlled by light–matter hybrid 
states.

Figure 3: Variation of thermodynamic parameters of as a function of Rabi splitting energy.
Plots showing the changes in (A) the enthalpy of activation and (B) entropy of activation (T∆S‡, T = 298 K) under VSC (red squares). The blue 
circles represent the corresponding noncavity values for the various CPTA shown in top axis. (C) Shows the difference between the free energy 
of activation under VSC with increasing ħΩR at normal incidence and the noncavity situation at the same CPTA. (D) The decrease in the ratio of 
the reaction rates at 25°C under VSC for various values of ħΩR relative to the noncavity situation. The dashed lines are guides to the eye.

Figure 4: Vibrational strong coupling modifies the reactive landscape to a dissociative path. 
Schematic illustration of possible transition states under (A) noncavity and (B) VSC.
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compensate each other. The upward trend of ∆(∆G‡) with 
the increase of ħΩR is representative of the higher energy 
requirement for the desilylation under VSC compared to 
the noncavity and leads to the retarded reactivity up to a 
factor 4.5 as shown in Figure 3D and as reported earlier [3].

It is remarkable that although the changes in the ther-
modynamic parameters follow the Rabi splitting, their 
magnitude is much greater than the VSC induced ħΩR. 
This indicates that the effect of VSC is not only an ener-
getic one on the potential energy surface leading to the 
products, it must also imply a change in reaction mecha-
nism, which is confirmed by the evolution of ∆H‡ and ∆S‡ 
as discussed elsewhere [3]. It is interesting to see that the 
VSC has a retarding effect on the reaction, which could be 
understood by looking into the formation and organisa-
tion of the TS of the rate-limiting step.

The thermodynamic parameter ∆H‡ mostly represents 
the reorganisation energy requirement for the forma-
tion of the TS, and ∆S‡ primarily indicates the degree of 
organisation of the TS [35]. Under ambient conditions, the 
reaction studied here proceeds through a pentacoordinate 
intermediate and follows an associative mechanism with 
an ordered TS [35–37]. The lower value of ∆H‡ (30 ± 4 kJ 
mol−1) and the large negative value of T∆S‡ (−54 ± 6  kJ 
mol−1, T = 298 K) for the noncavity experiments agree well 
with the associative mechanism and with a TS that is more 

reactant/intermediate-like as schematically displayed in 
Figure 4A. Interestingly, the thermodynamic data show 
that the reaction proceeds through a more product-like 
TS as shown in Figure 4B under VSC. The dissociative TS 
requires higher energy as it is more bond-breaking, and it 
is less strained because of the tetrahedral-like structure. 
This could mean that the intermediate generated under 
VSC is easier to form but more stable than the noncavity 
case either by a charge stabilisation or by anisotropic inter-
actions induced by light–matter coupling. For example, 
mode selective chemistry experiments have shown that TS 
control of the reaction can be modulated by anisotropic 
forces either to enhance or suppress a particular reaction 
path [38]. In other words, the role of strong coupling could 
be more important in determining the position and struc-
ture of the TS as shown in recent experimental [6, 8] and 
theoretical studies [23, 24].

In summary, we have shown that the thermodynamic 
parameters of a chemical reaction under VSC are indeed 
dependent on the strong coupling strength. This further 
illustrates that the polaritonic states are delocalised over 
all the molecules involved in the strong coupling and act 
collectively, even though the reactions are ultimately local-
ised on single molecules. The observed changes in chemi-
cal dynamics of the present system, despite the relatively 
weak Rabi splitting energy compared to the TS energy of 

Figure 2: Eyring plots of reaction under VSC and noncavity conditions.
(A–F) Plots of reaction rate as a function of temperature under VSC (red diamonds) for the various Rabi splitting energies and the 
corresponding plot for noncavity reactions (blue squares). The different values of ħΩR are shown in the plots. Least-squares method was 
used to fit the data, and the goodness of the fit was assessed based on the coefficient of determination (R2) value. For each fit, R2 value 
was ≥0.95.
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visible as split vibrational modes separated by the Rabi 
splitting energy (ħΩR) in the absorption spectrum of the 
molecule. The formation of polaritonic states is schemati-
cally shown in Figure 1A. The coupling strength, ħΩR, is 
often decisive in the modification of molecular properties, 
and its magnitude for a molecule can be calculated with 
the Jaynes–Cummings two-state model, which reduces to 
(1) in the absence of any dissipation:
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where d is the transition dipole moment of the molecule 
(which is determined by the derivative of the permanent 
dipole moment of the vibrational mode), ħω is the optical 
resonance, ε0 is the vacuum permittivity, ν is the volume 

of the electromagnetic mode, and nph gives the number 
photons involved in the strong coupling. Detailed descrip-
tion of strong light–matter coupling, and its impact on 
molecular and material properties can be found in [1, 
27–33]. For discussions specific to the physics of VSC, 
the reader is referred to [11] and [16]. The last part of  
(1) points out that ħΩR has a residual value known as 
vacuum Rabi splitting energy even in the absence of real 
photons. In other words, the zero-point energy fluctua-
tions of the cavity enable the formation of light–matter 
hybrid states in the dark. The experiments reported here 
are carried out under this regime, such that the weak IR 
light used to intermittently probe the system does not 
increase the ħΩR in this collective coupling condition. The 
magnitude of ħΩR is varied only when the number of mole-
cules (N) involved in the coupling process is changed. This 
is because the volume of a single electromagnetic mode 
can accommodate a large number of molecules. The wave 
functions of the hybrid states are delocalised over all the 
molecules interacting with the cavity mode, and there-
fore the R ,N v CΩ ∝ =!  where C is the concentration 
of the molecule. This scenario is schematically shown in 
Figure 1A with VSC of PTA as an example.

2   Results and discussion
The desilylation of PTA (Supplementary Material, 
Figure S1) was chosen as the model reaction for the present 
study. The VSC of the Si–C stretching vibrational mode 
(νSi−C; 860 cm−1, blue curve in Figure 1B) of PTA has shown 
to retard the Si–C bond scission dynamics [3], prompting 
us to do a detailed thermodynamic study, varying the ħΩR. 
Vibrational strong coupling of the νSi−C of PTA is achieved 
using a Fabry–Pérot cavity assembled in a temperature-
controllable and demountable IR cell (purchased from 
Specac) equipped with holes to inject the liquids. An air-
filled Fabry–Pérot cavity (empty cavity) is built in the IR 
cell by placing a Mylar spacer (6 ± 1 µm thick with a hollow 
central region) on top of an Au-coated ZnSe window 
(bottom mirror), which is then covered by a top mirror 
of Au sputtered on a ZnSe substrate having an inlet and 
outlet hole for sample injection. To protect the Au from the 
reactants, a 200-nm-thick SiO2 (glass) was deposited on 
top of the Au mirrors. The IR cell is then closed by tighten-
ing the screws on the top lid. Such an empty cavity has 
many equally spaced modes in the IR whose periodicity 
is determined by the path length of the cavity (Figure S2). 
Using a screwdriver, the empty cavity path length is then 
fine-tuned by adjusting the screws on the cell such that 

Figure 1: Formation of polaritonic states and VSC of Si–C stretching 
modes of PTA.
(A) Schematic illustration of the formation of polaritonic states 
P+ and P− and the modulation of Rabi splitting energy as the 
concentration of PTA (CPTA) is varied. (B) FT-IR transmission spectra 
showing the vibrational modes of PTA in methanol (blue curve) and 
the Rabi splitting corresponding to the VSC of the Si–C stretching 
modes as a function of CPTA. The shaded region shows the width of 
the Si–C stretching vibration, and the dotted lines are guide to the 
eyes. (C) The plot showing the linear dependence of Rabi splitting 
energy on the square root of CPTA.
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(νSi−C; 860 cm−1, blue curve in Figure 1B) of PTA has shown 
to retard the Si–C bond scission dynamics [3], prompting 
us to do a detailed thermodynamic study, varying the ħΩR. 
Vibrational strong coupling of the νSi−C of PTA is achieved 
using a Fabry–Pérot cavity assembled in a temperature-
controllable and demountable IR cell (purchased from 
Specac) equipped with holes to inject the liquids. An air-
filled Fabry–Pérot cavity (empty cavity) is built in the IR 
cell by placing a Mylar spacer (6 ± 1 µm thick with a hollow 
central region) on top of an Au-coated ZnSe window 
(bottom mirror), which is then covered by a top mirror 
of Au sputtered on a ZnSe substrate having an inlet and 
outlet hole for sample injection. To protect the Au from the 
reactants, a 200-nm-thick SiO2 (glass) was deposited on 
top of the Au mirrors. The IR cell is then closed by tighten-
ing the screws on the top lid. Such an empty cavity has 
many equally spaced modes in the IR whose periodicity 
is determined by the path length of the cavity (Figure S2). 
Using a screwdriver, the empty cavity path length is then 
fine-tuned by adjusting the screws on the cell such that 

Figure 1: Formation of polaritonic states and VSC of Si–C stretching 
modes of PTA.
(A) Schematic illustration of the formation of polaritonic states 
P+ and P− and the modulation of Rabi splitting energy as the 
concentration of PTA (CPTA) is varied. (B) FT-IR transmission spectra 
showing the vibrational modes of PTA in methanol (blue curve) and 
the Rabi splitting corresponding to the VSC of the Si–C stretching 
modes as a function of CPTA. The shaded region shows the width of 
the Si–C stretching vibration, and the dotted lines are guide to the 
eyes. (C) The plot showing the linear dependence of Rabi splitting 
energy on the square root of CPTA.
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visible as split vibrational modes separated by the Rabi 
splitting energy (ħΩR) in the absorption spectrum of the 
molecule. The formation of polaritonic states is schemati-
cally shown in Figure 1A. The coupling strength, ħΩR, is 
often decisive in the modification of molecular properties, 
and its magnitude for a molecule can be calculated with 
the Jaynes–Cummings two-state model, which reduces to 
(1) in the absence of any dissipation:
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cules (N) involved in the coupling process is changed. This 
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Figure 1A with VSC of PTA as an example.
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study. The VSC of the Si–C stretching vibrational mode 
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Vibrational strong coupling of the νSi−C of PTA is achieved 
using a Fabry–Pérot cavity assembled in a temperature-
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Specac) equipped with holes to inject the liquids. An air-
filled Fabry–Pérot cavity (empty cavity) is built in the IR 
cell by placing a Mylar spacer (6 ± 1 µm thick with a hollow 
central region) on top of an Au-coated ZnSe window 
(bottom mirror), which is then covered by a top mirror 
of Au sputtered on a ZnSe substrate having an inlet and 
outlet hole for sample injection. To protect the Au from the 
reactants, a 200-nm-thick SiO2 (glass) was deposited on 
top of the Au mirrors. The IR cell is then closed by tighten-
ing the screws on the top lid. Such an empty cavity has 
many equally spaced modes in the IR whose periodicity 
is determined by the path length of the cavity (Figure S2). 
Using a screwdriver, the empty cavity path length is then 
fine-tuned by adjusting the screws on the cell such that 

Figure 1: Formation of polaritonic states and VSC of Si–C stretching 
modes of PTA.
(A) Schematic illustration of the formation of polaritonic states 
P+ and P− and the modulation of Rabi splitting energy as the 
concentration of PTA (CPTA) is varied. (B) FT-IR transmission spectra 
showing the vibrational modes of PTA in methanol (blue curve) and 
the Rabi splitting corresponding to the VSC of the Si–C stretching 
modes as a function of CPTA. The shaded region shows the width of 
the Si–C stretching vibration, and the dotted lines are guide to the 
eyes. (C) The plot showing the linear dependence of Rabi splitting 
energy on the square root of CPTA.
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the reaction, point to structural changes in the TS under 
VSC. With more experiments and theoretical understand-
ing about the TS changes under strong coupling, it should 

be possible to predict the catalytic activity and the product 
selectivity of reactions controlled by light–matter hybrid 
states.

Figure 3: Variation of thermodynamic parameters of as a function of Rabi splitting energy.
Plots showing the changes in (A) the enthalpy of activation and (B) entropy of activation (T∆S‡, T = 298 K) under VSC (red squares). The blue 
circles represent the corresponding noncavity values for the various CPTA shown in top axis. (C) Shows the difference between the free energy 
of activation under VSC with increasing ħΩR at normal incidence and the noncavity situation at the same CPTA. (D) The decrease in the ratio of 
the reaction rates at 25°C under VSC for various values of ħΩR relative to the noncavity situation. The dashed lines are guides to the eye.

Figure 4: Vibrational strong coupling modifies the reactive landscape to a dissociative path. 
Schematic illustration of possible transition states under (A) noncavity and (B) VSC.
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compensate each other. The upward trend of ∆(∆G‡) with 
the increase of ħΩR is representative of the higher energy 
requirement for the desilylation under VSC compared to 
the noncavity and leads to the retarded reactivity up to a 
factor 4.5 as shown in Figure 3D and as reported earlier [3].

It is remarkable that although the changes in the ther-
modynamic parameters follow the Rabi splitting, their 
magnitude is much greater than the VSC induced ħΩR. 
This indicates that the effect of VSC is not only an ener-
getic one on the potential energy surface leading to the 
products, it must also imply a change in reaction mecha-
nism, which is confirmed by the evolution of ∆H‡ and ∆S‡ 
as discussed elsewhere [3]. It is interesting to see that the 
VSC has a retarding effect on the reaction, which could be 
understood by looking into the formation and organisa-
tion of the TS of the rate-limiting step.

The thermodynamic parameter ∆H‡ mostly represents 
the reorganisation energy requirement for the forma-
tion of the TS, and ∆S‡ primarily indicates the degree of 
organisation of the TS [35]. Under ambient conditions, the 
reaction studied here proceeds through a pentacoordinate 
intermediate and follows an associative mechanism with 
an ordered TS [35–37]. The lower value of ∆H‡ (30 ± 4 kJ 
mol−1) and the large negative value of T∆S‡ (−54 ± 6  kJ 
mol−1, T = 298 K) for the noncavity experiments agree well 
with the associative mechanism and with a TS that is more 

reactant/intermediate-like as schematically displayed in 
Figure 4A. Interestingly, the thermodynamic data show 
that the reaction proceeds through a more product-like 
TS as shown in Figure 4B under VSC. The dissociative TS 
requires higher energy as it is more bond-breaking, and it 
is less strained because of the tetrahedral-like structure. 
This could mean that the intermediate generated under 
VSC is easier to form but more stable than the noncavity 
case either by a charge stabilisation or by anisotropic inter-
actions induced by light–matter coupling. For example, 
mode selective chemistry experiments have shown that TS 
control of the reaction can be modulated by anisotropic 
forces either to enhance or suppress a particular reaction 
path [38]. In other words, the role of strong coupling could 
be more important in determining the position and struc-
ture of the TS as shown in recent experimental [6, 8] and 
theoretical studies [23, 24].

In summary, we have shown that the thermodynamic 
parameters of a chemical reaction under VSC are indeed 
dependent on the strong coupling strength. This further 
illustrates that the polaritonic states are delocalised over 
all the molecules involved in the strong coupling and act 
collectively, even though the reactions are ultimately local-
ised on single molecules. The observed changes in chemi-
cal dynamics of the present system, despite the relatively 
weak Rabi splitting energy compared to the TS energy of 

Figure 2: Eyring plots of reaction under VSC and noncavity conditions.
(A–F) Plots of reaction rate as a function of temperature under VSC (red diamonds) for the various Rabi splitting energies and the 
corresponding plot for noncavity reactions (blue squares). The different values of ħΩR are shown in the plots. Least-squares method was 
used to fit the data, and the goodness of the fit was assessed based on the coefficient of determination (R2) value. For each fit, R2 value 
was ≥0.95.
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visible as split vibrational modes separated by the Rabi 
splitting energy (ħΩR) in the absorption spectrum of the 
molecule. The formation of polaritonic states is schemati-
cally shown in Figure 1A. The coupling strength, ħΩR, is 
often decisive in the modification of molecular properties, 
and its magnitude for a molecule can be calculated with 
the Jaynes–Cummings two-state model, which reduces to 
(1) in the absence of any dissipation:
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where d is the transition dipole moment of the molecule 
(which is determined by the derivative of the permanent 
dipole moment of the vibrational mode), ħω is the optical 
resonance, ε0 is the vacuum permittivity, ν is the volume 

of the electromagnetic mode, and nph gives the number 
photons involved in the strong coupling. Detailed descrip-
tion of strong light–matter coupling, and its impact on 
molecular and material properties can be found in [1, 
27–33]. For discussions specific to the physics of VSC, 
the reader is referred to [11] and [16]. The last part of  
(1) points out that ħΩR has a residual value known as 
vacuum Rabi splitting energy even in the absence of real 
photons. In other words, the zero-point energy fluctua-
tions of the cavity enable the formation of light–matter 
hybrid states in the dark. The experiments reported here 
are carried out under this regime, such that the weak IR 
light used to intermittently probe the system does not 
increase the ħΩR in this collective coupling condition. The 
magnitude of ħΩR is varied only when the number of mole-
cules (N) involved in the coupling process is changed. This 
is because the volume of a single electromagnetic mode 
can accommodate a large number of molecules. The wave 
functions of the hybrid states are delocalised over all the 
molecules interacting with the cavity mode, and there-
fore the R ,N v CΩ ∝ =!  where C is the concentration 
of the molecule. This scenario is schematically shown in 
Figure 1A with VSC of PTA as an example.

2   Results and discussion
The desilylation of PTA (Supplementary Material, 
Figure S1) was chosen as the model reaction for the present 
study. The VSC of the Si–C stretching vibrational mode 
(νSi−C; 860 cm−1, blue curve in Figure 1B) of PTA has shown 
to retard the Si–C bond scission dynamics [3], prompting 
us to do a detailed thermodynamic study, varying the ħΩR. 
Vibrational strong coupling of the νSi−C of PTA is achieved 
using a Fabry–Pérot cavity assembled in a temperature-
controllable and demountable IR cell (purchased from 
Specac) equipped with holes to inject the liquids. An air-
filled Fabry–Pérot cavity (empty cavity) is built in the IR 
cell by placing a Mylar spacer (6 ± 1 µm thick with a hollow 
central region) on top of an Au-coated ZnSe window 
(bottom mirror), which is then covered by a top mirror 
of Au sputtered on a ZnSe substrate having an inlet and 
outlet hole for sample injection. To protect the Au from the 
reactants, a 200-nm-thick SiO2 (glass) was deposited on 
top of the Au mirrors. The IR cell is then closed by tighten-
ing the screws on the top lid. Such an empty cavity has 
many equally spaced modes in the IR whose periodicity 
is determined by the path length of the cavity (Figure S2). 
Using a screwdriver, the empty cavity path length is then 
fine-tuned by adjusting the screws on the cell such that 

Figure 1: Formation of polaritonic states and VSC of Si–C stretching 
modes of PTA.
(A) Schematic illustration of the formation of polaritonic states 
P+ and P− and the modulation of Rabi splitting energy as the 
concentration of PTA (CPTA) is varied. (B) FT-IR transmission spectra 
showing the vibrational modes of PTA in methanol (blue curve) and 
the Rabi splitting corresponding to the VSC of the Si–C stretching 
modes as a function of CPTA. The shaded region shows the width of 
the Si–C stretching vibration, and the dotted lines are guide to the 
eyes. (C) The plot showing the linear dependence of Rabi splitting 
energy on the square root of CPTA.

250      A. Thomas et al.: Ground state chemistry under vibrational strong coupling

visible as split vibrational modes separated by the Rabi 
splitting energy (ħΩR) in the absorption spectrum of the 
molecule. The formation of polaritonic states is schemati-
cally shown in Figure 1A. The coupling strength, ħΩR, is 
often decisive in the modification of molecular properties, 
and its magnitude for a molecule can be calculated with 
the Jaynes–Cummings two-state model, which reduces to 
(1) in the absence of any dissipation:

 
R ph

0
2 12d nv

ω
Ω

ε
= × +!!  (1)

where d is the transition dipole moment of the molecule 
(which is determined by the derivative of the permanent 
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study. The VSC of the Si–C stretching vibrational mode 
(νSi−C; 860 cm−1, blue curve in Figure 1B) of PTA has shown 
to retard the Si–C bond scission dynamics [3], prompting 
us to do a detailed thermodynamic study, varying the ħΩR. 
Vibrational strong coupling of the νSi−C of PTA is achieved 
using a Fabry–Pérot cavity assembled in a temperature-
controllable and demountable IR cell (purchased from 
Specac) equipped with holes to inject the liquids. An air-
filled Fabry–Pérot cavity (empty cavity) is built in the IR 
cell by placing a Mylar spacer (6 ± 1 µm thick with a hollow 
central region) on top of an Au-coated ZnSe window 
(bottom mirror), which is then covered by a top mirror 
of Au sputtered on a ZnSe substrate having an inlet and 
outlet hole for sample injection. To protect the Au from the 
reactants, a 200-nm-thick SiO2 (glass) was deposited on 
top of the Au mirrors. The IR cell is then closed by tighten-
ing the screws on the top lid. Such an empty cavity has 
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fine-tuned by adjusting the screws on the cell such that 

Figure 1: Formation of polaritonic states and VSC of Si–C stretching 
modes of PTA.
(A) Schematic illustration of the formation of polaritonic states 
P+ and P− and the modulation of Rabi splitting energy as the 
concentration of PTA (CPTA) is varied. (B) FT-IR transmission spectra 
showing the vibrational modes of PTA in methanol (blue curve) and 
the Rabi splitting corresponding to the VSC of the Si–C stretching 
modes as a function of CPTA. The shaded region shows the width of 
the Si–C stretching vibration, and the dotted lines are guide to the 
eyes. (C) The plot showing the linear dependence of Rabi splitting 
energy on the square root of CPTA.
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the reaction, point to structural changes in the TS under 
VSC. With more experiments and theoretical understand-
ing about the TS changes under strong coupling, it should 

be possible to predict the catalytic activity and the product 
selectivity of reactions controlled by light–matter hybrid 
states.

Figure 3: Variation of thermodynamic parameters of as a function of Rabi splitting energy.
Plots showing the changes in (A) the enthalpy of activation and (B) entropy of activation (T∆S‡, T = 298 K) under VSC (red squares). The blue 
circles represent the corresponding noncavity values for the various CPTA shown in top axis. (C) Shows the difference between the free energy 
of activation under VSC with increasing ħΩR at normal incidence and the noncavity situation at the same CPTA. (D) The decrease in the ratio of 
the reaction rates at 25°C under VSC for various values of ħΩR relative to the noncavity situation. The dashed lines are guides to the eye.

Figure 4: Vibrational strong coupling modifies the reactive landscape to a dissociative path. 
Schematic illustration of possible transition states under (A) noncavity and (B) VSC.
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compensate each other. The upward trend of ∆(∆G‡) with 
the increase of ħΩR is representative of the higher energy 
requirement for the desilylation under VSC compared to 
the noncavity and leads to the retarded reactivity up to a 
factor 4.5 as shown in Figure 3D and as reported earlier [3].

It is remarkable that although the changes in the ther-
modynamic parameters follow the Rabi splitting, their 
magnitude is much greater than the VSC induced ħΩR. 
This indicates that the effect of VSC is not only an ener-
getic one on the potential energy surface leading to the 
products, it must also imply a change in reaction mecha-
nism, which is confirmed by the evolution of ∆H‡ and ∆S‡ 
as discussed elsewhere [3]. It is interesting to see that the 
VSC has a retarding effect on the reaction, which could be 
understood by looking into the formation and organisa-
tion of the TS of the rate-limiting step.

The thermodynamic parameter ∆H‡ mostly represents 
the reorganisation energy requirement for the forma-
tion of the TS, and ∆S‡ primarily indicates the degree of 
organisation of the TS [35]. Under ambient conditions, the 
reaction studied here proceeds through a pentacoordinate 
intermediate and follows an associative mechanism with 
an ordered TS [35–37]. The lower value of ∆H‡ (30 ± 4 kJ 
mol−1) and the large negative value of T∆S‡ (−54 ± 6  kJ 
mol−1, T = 298 K) for the noncavity experiments agree well 
with the associative mechanism and with a TS that is more 

reactant/intermediate-like as schematically displayed in 
Figure 4A. Interestingly, the thermodynamic data show 
that the reaction proceeds through a more product-like 
TS as shown in Figure 4B under VSC. The dissociative TS 
requires higher energy as it is more bond-breaking, and it 
is less strained because of the tetrahedral-like structure. 
This could mean that the intermediate generated under 
VSC is easier to form but more stable than the noncavity 
case either by a charge stabilisation or by anisotropic inter-
actions induced by light–matter coupling. For example, 
mode selective chemistry experiments have shown that TS 
control of the reaction can be modulated by anisotropic 
forces either to enhance or suppress a particular reaction 
path [38]. In other words, the role of strong coupling could 
be more important in determining the position and struc-
ture of the TS as shown in recent experimental [6, 8] and 
theoretical studies [23, 24].

In summary, we have shown that the thermodynamic 
parameters of a chemical reaction under VSC are indeed 
dependent on the strong coupling strength. This further 
illustrates that the polaritonic states are delocalised over 
all the molecules involved in the strong coupling and act 
collectively, even though the reactions are ultimately local-
ised on single molecules. The observed changes in chemi-
cal dynamics of the present system, despite the relatively 
weak Rabi splitting energy compared to the TS energy of 

Figure 2: Eyring plots of reaction under VSC and noncavity conditions.
(A–F) Plots of reaction rate as a function of temperature under VSC (red diamonds) for the various Rabi splitting energies and the 
corresponding plot for noncavity reactions (blue squares). The different values of ħΩR are shown in the plots. Least-squares method was 
used to fit the data, and the goodness of the fit was assessed based on the coefficient of determination (R2) value. For each fit, R2 value 
was ≥0.95.
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visible as split vibrational modes separated by the Rabi 
splitting energy (ħΩR) in the absorption spectrum of the 
molecule. The formation of polaritonic states is schemati-
cally shown in Figure 1A. The coupling strength, ħΩR, is 
often decisive in the modification of molecular properties, 
and its magnitude for a molecule can be calculated with 
the Jaynes–Cummings two-state model, which reduces to 
(1) in the absence of any dissipation:
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where d is the transition dipole moment of the molecule 
(which is determined by the derivative of the permanent 
dipole moment of the vibrational mode), ħω is the optical 
resonance, ε0 is the vacuum permittivity, ν is the volume 

of the electromagnetic mode, and nph gives the number 
photons involved in the strong coupling. Detailed descrip-
tion of strong light–matter coupling, and its impact on 
molecular and material properties can be found in [1, 
27–33]. For discussions specific to the physics of VSC, 
the reader is referred to [11] and [16]. The last part of  
(1) points out that ħΩR has a residual value known as 
vacuum Rabi splitting energy even in the absence of real 
photons. In other words, the zero-point energy fluctua-
tions of the cavity enable the formation of light–matter 
hybrid states in the dark. The experiments reported here 
are carried out under this regime, such that the weak IR 
light used to intermittently probe the system does not 
increase the ħΩR in this collective coupling condition. The 
magnitude of ħΩR is varied only when the number of mole-
cules (N) involved in the coupling process is changed. This 
is because the volume of a single electromagnetic mode 
can accommodate a large number of molecules. The wave 
functions of the hybrid states are delocalised over all the 
molecules interacting with the cavity mode, and there-
fore the R ,N v CΩ ∝ =!  where C is the concentration 
of the molecule. This scenario is schematically shown in 
Figure 1A with VSC of PTA as an example.

2   Results and discussion
The desilylation of PTA (Supplementary Material, 
Figure S1) was chosen as the model reaction for the present 
study. The VSC of the Si–C stretching vibrational mode 
(νSi−C; 860 cm−1, blue curve in Figure 1B) of PTA has shown 
to retard the Si–C bond scission dynamics [3], prompting 
us to do a detailed thermodynamic study, varying the ħΩR. 
Vibrational strong coupling of the νSi−C of PTA is achieved 
using a Fabry–Pérot cavity assembled in a temperature-
controllable and demountable IR cell (purchased from 
Specac) equipped with holes to inject the liquids. An air-
filled Fabry–Pérot cavity (empty cavity) is built in the IR 
cell by placing a Mylar spacer (6 ± 1 µm thick with a hollow 
central region) on top of an Au-coated ZnSe window 
(bottom mirror), which is then covered by a top mirror 
of Au sputtered on a ZnSe substrate having an inlet and 
outlet hole for sample injection. To protect the Au from the 
reactants, a 200-nm-thick SiO2 (glass) was deposited on 
top of the Au mirrors. The IR cell is then closed by tighten-
ing the screws on the top lid. Such an empty cavity has 
many equally spaced modes in the IR whose periodicity 
is determined by the path length of the cavity (Figure S2). 
Using a screwdriver, the empty cavity path length is then 
fine-tuned by adjusting the screws on the cell such that 

Figure 1: Formation of polaritonic states and VSC of Si–C stretching 
modes of PTA.
(A) Schematic illustration of the formation of polaritonic states 
P+ and P− and the modulation of Rabi splitting energy as the 
concentration of PTA (CPTA) is varied. (B) FT-IR transmission spectra 
showing the vibrational modes of PTA in methanol (blue curve) and 
the Rabi splitting corresponding to the VSC of the Si–C stretching 
modes as a function of CPTA. The shaded region shows the width of 
the Si–C stretching vibration, and the dotted lines are guide to the 
eyes. (C) The plot showing the linear dependence of Rabi splitting 
energy on the square root of CPTA.
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of the electromagnetic mode, and nph gives the number 
photons involved in the strong coupling. Detailed descrip-
tion of strong light–matter coupling, and its impact on 
molecular and material properties can be found in [1, 
27–33]. For discussions specific to the physics of VSC, 
the reader is referred to [11] and [16]. The last part of  
(1) points out that ħΩR has a residual value known as 
vacuum Rabi splitting energy even in the absence of real 
photons. In other words, the zero-point energy fluctua-
tions of the cavity enable the formation of light–matter 
hybrid states in the dark. The experiments reported here 
are carried out under this regime, such that the weak IR 
light used to intermittently probe the system does not 
increase the ħΩR in this collective coupling condition. The 
magnitude of ħΩR is varied only when the number of mole-
cules (N) involved in the coupling process is changed. This 
is because the volume of a single electromagnetic mode 
can accommodate a large number of molecules. The wave 
functions of the hybrid states are delocalised over all the 
molecules interacting with the cavity mode, and there-
fore the R ,N v CΩ ∝ =!  where C is the concentration 
of the molecule. This scenario is schematically shown in 
Figure 1A with VSC of PTA as an example.

2   Results and discussion
The desilylation of PTA (Supplementary Material, 
Figure S1) was chosen as the model reaction for the present 
study. The VSC of the Si–C stretching vibrational mode 
(νSi−C; 860 cm−1, blue curve in Figure 1B) of PTA has shown 
to retard the Si–C bond scission dynamics [3], prompting 
us to do a detailed thermodynamic study, varying the ħΩR. 
Vibrational strong coupling of the νSi−C of PTA is achieved 
using a Fabry–Pérot cavity assembled in a temperature-
controllable and demountable IR cell (purchased from 
Specac) equipped with holes to inject the liquids. An air-
filled Fabry–Pérot cavity (empty cavity) is built in the IR 
cell by placing a Mylar spacer (6 ± 1 µm thick with a hollow 
central region) on top of an Au-coated ZnSe window 
(bottom mirror), which is then covered by a top mirror 
of Au sputtered on a ZnSe substrate having an inlet and 
outlet hole for sample injection. To protect the Au from the 
reactants, a 200-nm-thick SiO2 (glass) was deposited on 
top of the Au mirrors. The IR cell is then closed by tighten-
ing the screws on the top lid. Such an empty cavity has 
many equally spaced modes in the IR whose periodicity 
is determined by the path length of the cavity (Figure S2). 
Using a screwdriver, the empty cavity path length is then 
fine-tuned by adjusting the screws on the cell such that 

Figure 1: Formation of polaritonic states and VSC of Si–C stretching 
modes of PTA.
(A) Schematic illustration of the formation of polaritonic states 
P+ and P− and the modulation of Rabi splitting energy as the 
concentration of PTA (CPTA) is varied. (B) FT-IR transmission spectra 
showing the vibrational modes of PTA in methanol (blue curve) and 
the Rabi splitting corresponding to the VSC of the Si–C stretching 
modes as a function of CPTA. The shaded region shows the width of 
the Si–C stretching vibration, and the dotted lines are guide to the 
eyes. (C) The plot showing the linear dependence of Rabi splitting 
energy on the square root of CPTA.

Δ
(Δ
G
‡ )

 (k
Jm

ol
-1

)

ℏΩ! (cm-1)

4 

3 

2 

1 

0 
0 50 60 70 80 90 100 

ΔG#$%
‡ − ΔG&'()%*+,-.

‡

50 60 70 80 90 100
ℏΩ!(cm-1)

-60
0

0.00 0.5 1.0 2.0 2.5
CPTA(M)

1.5

-45

-30

-15

0

Under VSC
Non-Cavity

ΔS‡

TΔ
S‡

(k
Jm

ol
-1

)

0 50 60 70 80 90 100 0.0 

0.2 

0.4 

0.6 

0.8 

1.0

k v
sc

/k
No
n-
Ca
vit
y

ℏΩ! (cm-1)

kvsc /kNon-Cavity

(e)

(f)

(g)

Figure 20: Modification of thermodynamic parameters under vibrational strong coupling. (a) Transmission
spectra under vibrational strong coupling (VSC) showing Rabi-splitting ΩR at various solute concentrations. (b) Linear
increase in ΩR as a function of the square root of the concentration. Chemical rate inside (under VSC) and outside (non-
Cavity) cavity as a function of (c) temperature and (g) Rabi-splitting. Modification of thermodynamics parameters, (d)
change in enthalpy ∆H‡, (f) entropy ∆S‡ and (e) modification to free-energy barrier ∆G‡ under VSC as a function of Rabi-
splitting ΩR compared to the non-cavity scenario. This figure is reproduced from Ref. 33 under the CC BY license.

the single-molecule limit. The progress of the collective
coupling regime for VSC-modified reaction rate will be
discussed in Sec. 6.4.

We also recommend the readers for the following re-
sources for further reading. Ref. 1, Ref. 2, Ref. 368,
and Ref. 376 reviewed recent experimental results of
the VSC-modified reactivities. Ref. 106 and Ref. 98
provide an overview of recent progress on the theoret-
ical and computational developments in VSC-modified
reaction rate constants.

5.1 Model Hamiltonian of Vibrational
Strong Coupling

Recent theoretical works14,69,225,377,378 have focused on
investigating a single molecule coupled to a cavity mode
and try to obtain some insights into the VSC-modified
reactivities. For simplicity, we assume that the direc-
tion of the dipole is always aligned with the cavity field
polarization direction, such that µ̂·ê = µ̂. The universal
light-matter Hamiltonian for this ground state reaction
problem is given by ĤPF (Eq. 70) and using the projec-
tion operator that only includes the electronic ground
state as P̂ = |ψg(R)⟩⟨ψg(R)|, the projected light-matter
Hamiltonian becomes

ĤPF = T̂R + Eg(R)|ψg⟩⟨ψg| + Ĥsb(R, {x̂k, p̂k}) (192)

+
p̂2c
2

+
1

2
ω2
c

(
q̂c +

√
2

ℏωc
A0 · µgg(R)|ψg⟩⟨ψg|

)2

,

where the first two terms describe a molecular system in
terms of a reaction coordinate R, with a corresponding
kinetic energy operator T̂R, and Eg(R) = ⟨ψg|Ĥel|ψg⟩
is the ground state potential energy surface for the re-
action coordinate R, with and a molecular ground state
permanent dipole µgg(R) = ⟨ψg|µ̂|ψg⟩, see Sec. 2.1. Fur-
ther, Eg(R) takes the form of a harmonic potential near
the reactant well R0, where Eg(R) ≈ 1

2ω
2
0(R−R0)2 and

ω0 is the reactant well frequency. Similarly, near the
transition state configuration (R = R‡), Eg(R) takes
the form of a inverted harmonic potential, Eg(R) ≈
− 1

2ω
2
‡ (R − R‡)

2 + ∆E‡, where ω‡ is the barrier fre-

quency and ∆E‡ = Eg(R‡) − Eg(R0) is the potential
energy barrier. Most of the works reviewed here con-
sider Eg(R) to be a simple double-well potential94,363

or obtain it from a Shin-Metiu model.14,69,140

The Ĥsb term in Eq. 192 describes the system-bath
(vibration-photon) coupling

Ĥsb =
∑
k

p̂2k
2

+
1

2
ω2
c

(
x̂k +

ck ·R
ω2
k

)2

, (193)

which is the coupling between the reaction coordinate
R and the dissipative bath with positions {x̂k} (such as
solvent and other environmental DOFs). This system-
bath coupling is characterized by the coupling constant
ck and frequency ωk, described by a spectral density

J(ω) =
∑

k
c2k
2ωk

δ(ω − ωk).
Then, the second line of Eq. 192 describes how a cav-

ity photon mode q̂c couples to matter through the mat-
ter dipole µ̂ which for the majority of this section is
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considered as the ground state permanent dipole that
parametrically depends on R. Further, p̂c and q̂c are
the cavity photon mode momentum and position op-
erators, respectively, with a photon frequency ωc and
light-matter coupling strength A0.

In this model described by Eq. 192, the coupling
between q̂c and R creates a hybridization between
the molecular vibrational states and photonic states,
forming vibrational polariton states separated with a
Rabi-splitting (Fig. 19a). A simple expression for the
Rabi-splitting can be obtained by considering the light-
matter interaction term in ĤPF (Eq. 192) at the equi-
librium position of the reactant, R0. At R0, we may
approximate the permanent dipole as linear function
of R, µgg(R) ≈ µ0 + µ′

0R, where µ(0) ≡ µ(R0) is
the permanent dipole at the reactant well and µ′

0 ≡
∂µ
∂R

∣∣∣
R=R0

is the slope of dipole at the reactant well.

The light-matter coupling term is then expressed as√
ω3

c

2ℏA0·µg(R)|ψg⟩⟨ψg|·q̂c, which hybridizes the photon-

dressed vibronic-Fock states |ν0, 1⟩⊗|ψg⟩ (photonic exci-
tation) and |ν1, 0⟩⊗|ψg⟩ (vibrational excitation) causing
a Rabi-splitting of ℏΩR (under the resonant condition
ωc = ω0) of the form69,365

ℏΩR = 2

√
ℏ

2Mω0
ωcA0 · µ′

0 ≡ 2ℏωc · η, (194)

where M is the reduced mass of the reaction coordinate
R (the vibrational DOF that couple to the cavity), and

the unitless coupling strength η =
A0µ

′
0√

2Mℏω0
characterizes

the light-matter coupling strength. Note that to arrive
at Eq. 194 we have used the fact that ⟨ν0|µ0+µ′

0R|ν1⟩ =

µ′
0

√
ℏ

2Mω0
⟨ν0|b̂† + b̂|ν1⟩ = µ′

0

√
ℏ

2Mω0
where b̂† and b̂ are

the creation and annihilation operators for the nuclear
vibration associated with the coordinate R. Note that
Eq. 194 is only valid for the single-molecule case, but
the result can be generalized for N identical molecules
{Ri} coupling to q̂c. This is discussed in Eq. 219 of
Sec. 6.4.

Looking at Eq. 192, the similarity between the
vibration-phonon coupling (the second term) and the
vibration-photon coupling (the third term) is appar-
ent; for a linear permanent dipole µgg(R) = µ0 · R,
both second and third terms take the form of a typical
Caldeira-Leggett system-bath Hamiltonian.379 There-
fore, as much of the theories demonstrate, cavity modes
act as additional solvent degrees of freedom provid-
ing fluctuations and dissipation to the reaction coor-
dinate, resulting in the dynamical caging effect,14,69 or
re-distributing vibrational energy,94,97,380 hence leading
to modifications of the reaction rate constant.

5.2 Simple Transition State Theory for
VSC and its Limitation

Transition state theory can be employed by extracting
the free energy barrier along the reaction coordinate,

from the potential of mean force (PMF), F (R) that is
defined as322

e−βF (R) ≡
∫
dPdpc

∏
dpkdqc

∏
dxke

−βHPF , (195)

using the classical limit of the Hamiltonian HPF

(Eq. 192). Note that all phase space variables are in-
tegrated except the reaction coordinate R. The barrier
along the PMF, ∆F ‡ = F (R‡) − F (R0), is computed
from its value at the reactant well, R0, and the barrier,
R‡. The chemical rate using ∆F ‡ within transition state
theory is then written as,322,374

kTST =
kBT

h

1

Z0
e−β∆F ‡

. (196)

This TST expression effectively includes Entropic con-
tribution from the other DOFs that are not R and
should be more accurate than Eq. 197. Due to the
quadratic form of the light-matter coupled Hamiltonian
(Eq. 192), the free energy barrier (or equivalently the
∆F ‡) is independent of cavity frequency, ωc, or light-
matter coupling strength, A0.371 In Ref. 371, the PMF
for a molecular reaction coordinate was computed for
a cavity photon mode coupled to N non-interacting
molecules. It was found that the free energy barrier
extracted from the potential of mean force is not modi-
fied when coupling to the cavity and therefore no change
in chemical rate due to cavity coupling is predicted.371

Thus, Ref. 371 concludes the VSC-modified reactivities
can not be explained by TST.

Due to the harmonic system-bath interactions and the
quadratic light-matter interactions in the Hamiltonian
ĤPF in Eq. 192, the TST expression in Eq. 196 can be
equivalently expressed as follows374

kTST =
kBT

h

1

Z0
e−β∆E‡

≈ ω0

2π
e−β∆E‡

, (197)

where the ω0 is the reactant well frequency along the
reaction coordinate, and the rate depends on the po-
tential barrier height ∆E‡ = Eg(R‡) − Eg(R0) along
the reaction coordinate. Further, in Eq. 197, the ap-
proximate expression is obtained in the classical limit
for the partition function Z0, and it is assumed that
solvent friction is nearly zero while thermal equilibrium
in the reactant well persists at all times.374 The en-
tropic contribution of the environment to the free energy
barrier is set to zero as a result of this crude approx-
imation.374 Therefore, for this simple one-dimensional
transition state theory, cavity modification to chemical
reactivity can occur only due to the modification of the
barrier height ∆E‡.

When considering the cavity-molecule hybrid system,
it is reasonable to examine the two-dimensional poten-
tial, so-called the cavity Born-Oppenheimer surface146

V (R, qc) = Eg(R) +
1

2
ω2
c

(
q̂c +

√
2/ℏωcA0 · µgg(R)

)2
(198)

64



which is ĤPF− T̂R−Ĥsb (see Eq. 192 for ĤPF). The en-
ergy barrier along the minimum energy path for the two-
dimensional potential in Eq. 198 is unchanged in com-
parison to the original barrier ∆E‡ of the bare molecule
(barrier along R in Eg(R)). When the dipole self-energy
(DSE, which is ωc

ℏ A
2
0 · µ2

gg(R) in Eq. 198) is explic-

itly considered, E‡ remains invariant to changes of the
light-matter coupling strength or the photon frequency.
This is because the light-matter interaction Hamilto-
nian (Eq. 192 and Eq. 198) has a complete square of
(q̂c − q0c )2, and the stationary point along the photonic

coordinate qc is always q0c (R) = −
√

2
ℏωc

A0 · µgg(R) for

all possible R (see Ref. 69 for details). As a result, ∆E‡

is not changed for V (R, qc), regardless of the magnitude
of A0. Thus, kTST is also independent of ωc or A0 for
the Hamiltonian in Eq. 192. Note that it is crucial to in-
clude the dipole self-energy term ωc

ℏ (A0µgg(R))2 for de-
scribing light-matter interactions inside a Fabry–Pérot
cavity, without this term the barrier height and con-
sequently the kTST will be modified inside an optical
cavity,381,382 which should be viewed as an artifact,378

at least for the FP type of cavity. On the other hand,
the shape of the dipole can also play a role in deter-
mining the dynamics of the molecule in the absence of
the dipole self-energy (DSE) term.155 However, these
modifications will explicitly vanish when considering the
DSE.378

We note that it has been argued for plasmonic cavi-
ties, the light-matter interaction Hamiltonian does not
contain the DSE term.383 The work in Ref. 383 also
pointed out an ambiguity in computing the DSE which
originates from the truncation of the cavity modes. Ref.
81 resolved this ambiguity of truncating cavity modes
in the long-wavelength limit and showed that it is ap-
propriate to include the DSE term when considering a
few energetically relevant cavity photon modes. Overall,
the existence of the dipole self-energy (DSE) in the light-
matter Hamiltonian remains an ongoing debate.66,81,383

On the other hand, the ground state potential of the
coupled molecule-cavity hybrid system has been shown
to be modified, even in the presence of DSE, when in-
cluding electronic excited states101,103 but for high pho-
ton frequencies (in the UV regime) and is extensively
discussed in Sec. 3.3.4. Thus, such theoretical treat-
ments show neither resonance effect nor collective ef-
fect. In the next few sections, we will discuss theoretical
works that have attempted to address these effects.

5.3 Dynamical Recrossing and Trans-
mission Coefficients

The explicit dynamical interaction of the cavity DOF
and the reaction coordinate should be taken into ac-
count explicitly, rather than integrating out as was done
in Ref. 371 using kTST (Eq 196). Of course, the TST
rate is only a very crude approximation of the rate con-
stant, which explicitly assumes that once the reactive
trajectory reaches the transition configuration, it will

move forward to the product side (follow one direction)
and no recrossing of the barrier nor turning back to
the reactant side will occur. This is, of course, not ac-
curate for reactions in the condensed phase where the
solvent fluctuation can facilitate the reaction coordinate
to recross the barrier many times before finally settling
inside the product well.

A formally rigorous expression for the rate constant
(under the classical limit of nuclei) can be written as

k = lim
t→tp

κ(t) · kTST, (199)

where tp refers to the plateau time of the flux-side cor-
relation function, and κ(t) is the time-dependent trans-
mission coefficient that captures the dynamical recross-
ing effects, measuring the ratio between the reaction
rate and the TST rate. Since the classical κ(t) always
starts from 1 and decays to a finite value (between 0
and 1) at tp, the kTST is the upper limit of the actual
rate constant k. Numerically, the transmission coeffi-
cient can be numerically calculated from the flux-side
correlation function formalism384–386 as follows

κ(t) =
⟨F(0) · h[R(t) −R‡]⟩
⟨F(0) · h[Ṙ‡(0)]⟩

, (200)

where h[R − R‡] is the Heaviside function of the reac-
tion coordinate R, with the dividing surface R‡ that
separates the reactant and the product regions (for the
model system studied here, R‡ = 0), the flux function

F(t) = ḣ(t) = δ[R(t) − R‡] · Ṙ(t) measures the reac-
tive flux across the dividing surface (with δ(R) as the
Dirac delta function), and ⟨...⟩ represents the canon-
ical ensemble average (subject to a constraint on the
dividing surface which is enforced by δ[R(t)−R‡] inside

F(t)). Further, Ṙ‡(0) represents the initial velocity of
the nuclei on the dividing surface. The above flux-side
formalism of the reaction rate can be derived from On-
sager’s regression hypothesis, with derivations presented
in standard textbooks (e.g., Chapter 8.3 in Ref. 386).
Numerical examples of κ can be found in Ref. 69 and
Ref. 375 for the VSC problems.

Alternatively, κ can also be computed using the
Grote-Hynes (GH) rate theory,374,387 or equiva-
lently the multi-dimensional transition state theory
(MTST),388 that treats all degrees of freedoms classi-
cally. Within GH theory, the transmission coefficient is
given by

κGH =

∏
i ω̃

†
i∏

i ω̃i
, (201)

such that k = κGH · kTST, where ω̃†
i are the frequencies

associated with the stable normal modes (ω̃†2
i > 0) at

the transition state geometry, and ω̃i are normal mode
frequencies at the reactant well.14,69,374 The detailed
expression of κGH for ĤPF (Eq. 192) can be found in
Ref. 69.
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Figure 21: Cavity induced dynamical caging effect of the reaction coordinate and modification of ground
state chemical kinetics. (a) Absorption spectrum of a model system at different light-matter coupling strengths. (b)
Transmission coefficient κ as a function of the cavity frequency ωc at different coupling strengths. (c) Transmission coefficient
κ and the effective change of the Gibbs free energy barrier ∆(∆G‡) at different Rabi splitting ωR, i.e., coupling strengths. The
nonlinear change in ∆(∆G‡) is similar to the experimental observation shown in Fig. 20e. (d)-(e) Two-dimensional potential
energy surface with respect to the molecular coordinate R and photonic coordinate qc at small (d) and large (e) coupling
strengths. The black solid lines represent typical reactive trajectories. (f) Percentage yield of two competing pathways at
various cavity frequencies. Panels (a)-(e) are reproduced from Ref. 69 under the CC BY license. Panel (f) is reproduced with
permission from Ref. 14. Copyright 2022 American Chemical Society.

5.4 Dynamical Caging Effect and Sup-
pression of Rate Constant

In Ref. 69, it was theoretically demonstrated that the
cavity photon mode acts as a non-Markovian solvent-
like degree of freedom that is coupled to the molecular
reaction coordinate R, such that the presence of pho-
tonic coordinate enhances the recrossing of the reac-
tion coordinate and decreases chemical rate. In simple
chemical processes and enzymatic catalysis, a closely-
related phenomenon is referred to as the “dynamical
caging” effect,389–393 which has been well explained by
the Grote-Hynes (GH) rate theory.374,387,388 Due to the
low frequency of the cavity mode (in comparison to po-
lariton photochemistry), which is in the same frequency
range as the vibrational frequencies, both R and qc are
treated as classical DOFs in Ref. 69, and the GH the-
ory is used to study how the cavity mode affects the
dynamics of a reaction.14,69,94

In Ref. 69, such a classical description was employed
to investigate cavity-modified ground state chemical
rate for a single molecule coupled to a single cavity
mode. The model system is described by ĤPF (Eq. 192),
where the choice of Eg(R) is the ground state poten-
tial of the Shin-Metiu hydrogen atom transfer model.83

The key results of these studies14,69 are summarized in
Fig. 21. Fig. 21a presents the absorption spectra of the
polariton system, where with an increased light-matter
coupling strength η (Eq. 194), the Rabi splitting ΩR

also increases accordingly as observed in the absorp-
tion spectra. Fig. 21b presents the transmission coeffi-
cient, κ, computed numerically using Eq. 200 (dots) or
obtained using the GH theory through Eq. 201 (solid
lines). Since kTST remains invariant inside and out-
side the optical cavity, κ directly reports the absolute
change of the overall rate constant (see Eq. 199). In this
panel, we present the change of κ when the molecule is
coupled inside the cavity, with a range of cavity pho-
ton frequency ωc. Three different light-matter coupling
strengths, η = ΩR/2ℏωc, were chosen corresponding to
the Rabi-Splitting observed in the absorption spectra
shown in Fig. 21a. The cavity modified transmission co-
efficient κ in Fig. 21b clearly shows the cavity frequency-
dependent suppression of chemical rate, which was not
observed when only considering the TST level of the-
ory371 or when ignoring DSE.381 At a fixed light-matter
coupling strength A0, the transmission coefficient κ is
minimized at a frequency ωmin

c that is related to the
imaginary barrier frequency ω‡. This effect can be phys-
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ically understood as the cavity dynamically caging the
reaction coordinate R near the barrier leading to a re-
duction in chemical rate.69 Further, one can also un-
derstand the significant red-shift of the ωmin

c , with the
detailed theoretical explanation provided in Ref. 69. We
emphasize that there are no existing experiments that
report that matching cavity frequency ωc with the top of
the barrier frequency ω‡ will suppress the rate constant,
under the single molecule limit. So even though there is
a similarity between theory (Fig. 21b) and experiment
(Fig. 19b), one must clearly understand that they are
under very different coupling limits (single molecule for
theory, and collective coupling for experiments) as well
as at what photon frequency cavity most strongly mod-
ifies chemical reactivity. For the classical theories dis-
cussed above, it is when ωc ≈ ω‡, and for experiments,
it is ωc ≈ ω0 (reactant well frequency). Nevertheless,
the dynamical caging effect has also been observed in
the ab-initio VSC dynamics simulations380 of the reac-
tion in Fig. 19b. With the plasmonic cavity setup or
the epsilon-near-zero cavity,34 it is possible to confine
IR frequencies and even achieve an ultra-strong coupling
regime for just a few (or a single) molecules.394,395 Thus,
besides the purely theoretical value, the prediction in
Fig. 21 might also be within the reach of near-future
experimental setups.

Fig. 21c illustrates how the light-matter coupling
modifies chemical reactivities. As one increases ΩR (by
increasing the light-matter coupling strength A0), the
rate constant decreases in a non-linear fashion which
closely resembles the experimental trend in Fig. 20g.
For the PF Hamiltonian description that explicitly in-
cludes the DSE term, there is no change in kTST be-
cause there is no change of potential energy barrier.69

The only change in the rate comes from κ. The mod-
ification of κ (formally κ contributed to the change in
entropy374) will lead to the effective change of the free
energy barrier height. To this end, we use the Eyring
Rate equation to convert the change of rate from κ into
an effective ∆(∆G‡). The 4 times decrease in κ (blue
curve in Fig. 20c) results in ∼ 4 KJ/mol change in “ef-
fective” ∆(∆G‡) (red curve in Fig. 20c) at ∼ 700 cm−1

of ΩR. This theory indicates that such a non-linear in-
crease of the “effective” ∆(∆G‡) as increasing ΩR is in
fact due to the change of κ.

To clearly demonstrate the dynamical caging effect,
we further present representative reactive trajectory on
the Cavity BO surface (Eq. 198). Fig. 21d presents
a typical non-adiabatic case of the GH theory. When

the instantaneous friction is weak (
|C‡|
ωc

≪ ω‡), the GH
theory becomes a model of non-equilibrium solvation,
where the friction from the photonic coordinate qc does
not severely impede the transitions.396 In this case, the
transmission coefficient remains close to those without
the cavity, and the reactive trajectory crosses the bar-
rier without much influence from qc. Fig. 21e presents
a typical “dynamical caging” regime of the GH the-
ory, where the instantaneous friction from qc to R is

strong (
|C‡|
ωc

≫ ω‡), such that the reaction coordinate

R becomes trapped in a narrow “solvent cage” on the
barrier top.396 At longer times, the bath relaxations
of Ĥsb (Eq. 193) allow the R to move away from the
barrier top, but at shorter times, the reaction coordi-
nate R oscillates within the cavity-induced “solvent”
cage.397 The trajectory recrosses the dividing surface
(R‡ = 0) many times, resulting in oscillations of κ(t)
at a short time and with a small plateau value of κ(t)
at tp. Similar dynamical caging effects from the sol-
vent have been extensively studied in simple organic
reactions (SN1 and SN2)389,390,398 and enzymatic reac-
tions,391–393 where the solvent dynamics significantly
influence the reaction rate constant.374,396,399–401 Here,
the cavity photonic coordinate qc acts like a “solvent co-
ordinate”, and for strong couplings between qc and R,
the system exhibits the dynamical caging effect which
effectively slows down the reaction rate constant.

In Ref. 14, this theoretical framework of dynamical
caging was extended to two competing reactions cou-
pled to the cavity, motivated to provide a theoretical
explanation of the observed VSC mode-selectivity in
Fig. 19. In that work, two competing reaction pathways
that have nearly identical barrier heights but different
barrier frequencies are constructed as the model sys-
tems, both of which have their individual dipole that
couples to a common cavity mode.14 The work finds
that the dynamics of the cavity photon mode leads to a
cavity frequency-dependent dynamical caging effect of a
reaction coordinate, resulting in suppression of the rate
constant. In the presence of competitive reactions, it is
possible to preferentially (and selectively) cage a reac-
tion coordinate when the cavity frequency matches one
barrier frequency of two competing reactions, resulting
in a selective slow down of the reaction between two
highly competing ones.14 Fig. 21f presents several rep-
resentative data points. In particular, it demonstrates
that when using a high-frequency off-resonant cavity
(ωc is larger than all vibrational frequencies, such as
ωc > 1600 cm−1 in the current model), the selectiv-
ity is the same as the original selectivity without the
cavity (effectively ωc = 0). Further, the reverted pref-
erence occurs during a range of cavity frequencies, even
though the maximum reduction of the rate constants
for two competing reactions occurs at two specific cav-
ity frequencies. These theoretical results provide a new
perspective to understand the recent VSC enhanced se-
lectivities of competing reactions, such as the results
presented in Ref. 4 (see key results in Fig. 19d). The
results in Fig. 21f closely resemble the basic feature of
the experimental observation shown in Fig. 19d.

Despite the similarities between the theoretical pre-
dictions in Fig. 21 and the experimental observations
in Fig. 19, a number of significant differences must be
noted. Firstly, these theories suggest that κ is most
strongly suppressed when the cavity frequency, ωc, is
close to the barrier frequency, ω‡. This is in contrast
to what the experiments suggest (such as in Fig. 19b),
where the chemical rate is strongly suppressed when
photon frequency is close to the reactant well frequency.
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Secondly, the rate profile as a function of photon fre-
quency is much broader, spanning several orders of cav-
ity photon frequency. In contrast, experiments show
sharp resonant cavity modifications, such as in Fig. 19b.
Thirdly, these theoretical works14,69,94 that are based
on the GH theory only predict cavity-mediated suppres-
sion, while the experiments also report enhancements
(such as in Fig. 19c). Finally, these works are studying
cavity modifications at the level of single molecule and
single cavity mode. This is in contrast to the experi-
ments where an ensemble of molecules is coupled to a
distribution of cavity photon modes.

Recent theoretical works97,380,402,403 have also ex-
plored dynamical effects related to intra-molecular vi-
brational energy redistribution of the molecules coupled
to an optical cavity. Ref. 97 uses numerical simulations
to investigate the dissociation dynamics of a triatomic
molecular system (ozone) coupled to a cavity photon
mode. Classical molecular dynamics is used to describe
all degrees of freedom, including the nuclear DOF R and
the photonic DOF qc. In this work, the dissociation
dynamics were studied in the absence of a dissipative
bath and by initiating the system in a non-thermal-
equilibrium initial condition.97 Specifically, the cavity
photon mode was initialized at zero temperature, while
the molecular subsystem was initially deposited with
enough energy (∼ 34 kcal/mol) to ensure that the dis-
sociation of the ozone molecule takes place on a short
time scale. It was found that when the cavity frequen-
cies are close to vibrational modes, the “hot” molecular
subsystem (with a high enough initial energy) efficiently
exchanges energy with the “cold” cavity photon mode,
leading to a suppression of the dissociation probability.
While such a setup may not be representative of chem-
ical kinetics in real molecular systems given its highly
non-equilibrium initial state, it further illustrates the
rich dynamical interplay between the cavity and molec-
ular vibrations, which cannot be captured by static elec-
tronic structure calculations.

Similar conclusions have also been discovered from di-
rect on-the-fly ab-initio molecular dynamics simulations
in Ref. 380. In this work, the deprotection reaction of 1-
phenyl-2-trimethylsilylacetylene (PTA), experimentally
studied in Ref. 108 (see Fig. 19b) was investigated in
the gas phase inside the cavity. The direct numeri-
cal simulations reveal that the cavity mode mediates
the vibrational energy transfer between different vibra-
tional modes, resulting in a shorter bond distance for
the breaking bond during the reaction, thus in principle,
suppressing the reaction. Interestingly, there is a reso-
nant effect where the reactive bond distance will reach
its minimum length when the cavity frequency matches
the vibrational frequency of this bond. Future work is
needed to investigate if such an effect still survives in
the condensed phase (when considering the solvents) as
well as if the bond shorting effect is equivalent to the
reaction rate constant reduction.

5.4.1 Quantum Corrections of the Rate Con-
stant

Due to the initial success of the classical description
of molecules interacting with cavity photon modes, the
next natural question is how quantum effects (of the
cavity mode or molecular vibrations) will influence the
theoretical predictions. Along these lines, Ref. 377 at-
tempted to add (approximate) quantum corrections to
the GH rate theory to describe cavity-modified chem-
ical kinetics. Two possible quantum corrections377

are added, including (i) replacing the classical parti-
tion function with their quantum counterpart using the
quantum transition state theory (QTST)404 and (ii)
adding tunneling effect using the formalism of the cen-
troid TST (CTST).405 Using the QTST377 that only
includes the quantum correction in (i), the total rate
constant is written as

kQTST = κQ · ω0

2π
e−β∆E‡

= κQ · kTST, (202)

where kTST is expressed in Eq. 197, and κQ is the
corresponding transmission coefficient. This transmis-
sion coefficient κQ = κZPE · κS has two components, a
zero-point energy (ZPE) correction (contributing to en-
thalpy) to the transmission coefficient κZPE, and an en-
tropic component κS that depends on the normal mode
frequencies of reactant and the stable normal mode
frequencies at the transition state configuration. Un-
der the high temperature limit, κS ≈ κGH, and the
κQ ≈ κGH (with κZPE ≈ 1). Under the low temper-
ature limit, κQ ≈ κZPE.

Based on the QTST formalism, Ref. 377 found that
when the cavity photon frequency ωc matches the reac-
tant well frequency ω0 (i.e., a resonant condition), the
ZPE correction κZPE is minimized. This is in contrast
to the high temperature (classical limit) where the GH
theory predicts the transmission coefficient is indepen-
dent of ω0, but depends on ω‡. Ref. 377 further shows
that it is possible to have chemical kinetics minimizing
when ωc is close to ω0 for specific sets of parameters
when kQTST is dominated by κZPE (e.g., at low temper-
atures), and not dominated by κS. But in general, the
rate constant suppression will happen in a broad range
of ωc, resulting in a much broader range of the photon
frequency that suppresses the rate constant. This is in
contrast to the sharp resonant behavior in experiments
(see Fig. 19). Meanwhile, this work,377 also shows that
the additional quantum tunneling correction κT in the
centroid TST (CTST) theory (where the rate is now
k = κT ·kQTST) is much larger than the ZPE correction
κZPE. However, this tunneling correction minimizes the
chemical rate when the photon frequency is close to
the barrier frequency ω‡ in contrast to ω0, a behav-
ior similar to the GH theory.377 As a result, the overall
rate constant also minimizes when ωc is close to ω‡.
Overall, such quantum corrections, which are included
through approximate rate theories, do not bring theo-
retical predictions closer, and potentially further, from
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experiments.
In Ref. 378, it has also been shown that when the DSE

term is included, the cavity can only slightly modify
the ZPE and bond lengths, but no obvious effects on
dissociation energies and inversion barriers. When the
quantum effects is considered, the reaction barrier will
slightly decrease as the coupling strength increases. In
a follow-up work,225 the authors further concluded that
both the number of reactive channels and the tunneling
probability will be reduced when the quantum effects
are considered explicitly. It is also found that there
is a coherent energy exchange between the system and
cavity mode in the resonant case.

Finally, in Ref. 228, the chemical kinetics in a model
molecular system coupled to a dissipative solvent bath
and a lossy cavity mode was simulated with an ex-
act quantum dynamics approach. It is found that the
cavity can resonantly suppress the chemical reactiv-
ity of a molecular system that is strongly coupled to
resonant solvent modes (i.e., sharp peaks in the sol-
vent spectral density around reactant vibrational tran-
sitions). Such suppression occurs when the molecu-
lar vibrational states are split (through quantum light-
matter interactions) further away from resonant sol-
vent degrees of freedom, due to the formation of vi-
brational polaritons. This leads to a drastic reduction
in molecule-solvent interactions. Since this particular
mechanism relies on the formation of vibrational polari-
tons, the resonance condition between the cavity pho-
ton frequency and the vibrational frequency naturally
appears.228 This work also showed that chemical reac-
tivity can also be resonantly enhanced depending on
the details of the molecule, solvent, and cavity. Overall,
this work underscores the importance of the quantum
dynamical interplay of solvent, molecules and cavity de-
grees of freedom.

5.5 Energy Diffusion and Enhancement
of Rate constant

In the previous section, we reviewed theoretical works
that attempted to explain resonant suppression of chem-
ical reactivity. Importantly, some of the theoretical
works suggest that the cavity plays a role in effectively
modifying environmental friction. The works that used
GH theory14,69 showed that the effective increase in en-
vironmental friction led to the suppression of chemical
reactivity. The same argument can also be used to show
that cavity modification to environmental friction leads
to an enhancement of chemical reactivity if the solvent
friction is much weaker in the energy diffusion-limited
regime.363,375,407

To understand this, consider again a model molecular
system described by a double well potential such as in
the inset of Fig. 22b. The chemical reaction rate as a
function of environmental reorganization energy (pro-
portional to environmental friction) is computed using
the classical treatment for all degrees of freedom. The
reorganization energy Λ of a solvent is directly com-

puted from the solvent spectral density J(ω) (see be-

low Eq. 193) as Λ = 1
π

∫∞
0

J(ω)
ω dω. The resulting rate

constant is presented in Fig. 22a. The transmission
coefficient (black dashed line in Fig. 22a) shows two
distinct regimes: for Λ < 5 × 10−6 the chemical rate
increases with increasing Λ (so-called energy diffusion-
limited regime) and for Λ > 5 × 10−6 the chemical rate
decreases with increasing Λ (so-called spatial diffusion-
limited regime). The transition from the energy to the
spatial diffusion-limited regime around Λ ≈ 5 × 10−6 is
referred to as the Kramers turnover.374

Within the classical rate theory, the cavity photon
mode is regarded as an additional environmental degree
of freedom69 which increases the effective environmental
friction. Thus, depending on whether the solvent fric-
tion is in the energy or spatial diffusion-limited regime
the cavity mode is expected to enhance or suppress
chemical reaction rates, respectively.94,363,375 However,
in order to capture this cavity-modified enhancement
of chemical kinetics, one must go beyond the GH the-
ory which does not capture the energy diffusion-limited
regime, as shown in Fig. 22a where the κGH (red solid
line) diverges from the true transmission coefficient
(black dashed line) at low Λ.

In Ref. 363, an analytical rate theory based on the
Pollak-Grabert-Hänggi rate theory (PGH)406 was used
to capture the complete range of solvent friction val-
ues, from the energy diffusion-limited to the spatial
diffusion-limited regimes. Within the PGH theory, the
reaction rate constant is given as

k = Ycl · κGH · kTST ≡ κPGH · kTST (203)

where κPGH is the transmission coefficient within the
PGH theory and Ycl is the classical depopulation fac-
tor that accounts for the finite time for the reaction
coordinate to reach thermal equilibrium in the energy
diffusion-limited regime. In the spatial diffusion-limited
regime, Ycl → 1. As a result, in the spatial diffusion-
limited regime the classical rate predicted by the PGH
theory becomes k → κGH · kTST which is the same
as in the GH theory. Using this theory, the cavity-
induced enhancement of chemical rate was predicted
in Ref. 363, which was also demonstrated using direct
numerical simulations375 based on the flux-side corre-
lation function formalism (Eq. 200). It is found that
when the cavity frequency, ωc, is in resonance with the
reactant well frequency ω0, the cavity can considerably
improve the thermalization of the molecular system in
the energy diffusion-limited regime.363,375,407 This is di-
rectly reflected in the photon frequency dependence of
the depopulation faction Ycl shown in Fig. 22b (blue
solid line). The overall transmission coefficient κPGH

(consequently the shape of the rate constant as a func-
tion of photon frequency ωc) shown in Fig. 22b is dom-
inated by Ycl in the energy diffusion-limited regime.
Importantly, the chemical rate shows a clear resonant
structure, peaking when ωc ≈ ω0, and the width of the
“resonant rate constant enhancement profile” is much
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Figure 22: Cavity enhancement of ground state chemical kinetics. (a)-(b) Classical rate theory for cavity enhanced
chemical reactivity. (a) The chemical transmission coefficient in bare molecular system (dashed solid lines) and the de-
population factor (blue solid line) as a function of solvent friction computed using the Pollak-Grabert-Hänggi rate (PGH)
theory406 and the transmission coefficient within Grote-Hynes (GH) rate theory374,387,388 (red solid line). (b) Cavity pho-
ton frequency-dependent transmission coefficient (red solid line) and the depopulation factor (blue solid line). Inset shows
the double well potential of the model system studied in (a)-(b). (c)-(d) Direct molecular dynamics simulation of cavity
modification of the isomerization reaction in HONO, schematically illustrated in (c). (d) Cavity photon frequency-dependent
transmission coefficient directly obtained from molecular dynamics simulations. (e)-(f) Exact quantum dynamics simulation
of cavity enhancement in a model molecular system described with a double well potential shown in (e). (f) The chemical
rate constant as a function of photon frequency was obtained from exact quantum dynamics simulations and compared with
the absorption spectra of the molecule-cavity hybrid systems. Panels (a)-(b) are reproduced with permission from Ref. 363.
Copyright 2022 American Chemical Society. Panels (c)-(d) are reproduced with permission from Ref. 375. Copyright 2022
American Chemical Society. Panels (e)-(f) are reproduced from Ref. 228 with permission from the authors.

sharper than the cavity suppression of chemical reac-
tivity shown in Fig. 21 in the spatial diffusion-limited
regime. Ref. 363 further points out that the extent of
the cavity chemical kinetics modification is also more
substantial in the energy diffusion-limited regime than
in the spatial diffusion-limited regime, which often re-
sults in an enhancement by a factor of 2-3 (with a
A0 = 0.01 as the light-matter coupling).363

In Ref. 375, the same effect of cavity-enhanced chem-
ical reactivity was investigated for the cis-trans isomer-
ization of the HONO molecule, as schematically illus-
trated in Fig. 22c. With direct molecular dynamics
simulations, it is observed that when cavity photon fre-
quency is resonant to the O-N stretching mode at 900-
1000 cm−1 the chemical kinetics is enhanced (Fig. 22d).
This is because the O-N stretch is strongly coupled to
the torsion coordinate,375,408 which is the reaction coor-
dinate for this isomerization reaction. Using the same
computational setup they also verified the predictions
made in GH theory69 where the chemical rate is sup-
pressed due to cavity coupling in the spatial diffusion-
limited regime (see Sec.5.4).

It must be noted that chemical reactions in the liquid

phase are typically expected to take place in the spatial
diffusion-limited regime (strong solvent friction regime,
either the plateau regime or the over-damped Kramers
regime), whereas those in the gas phase are expected to
take place in the energy diffusion-limited regime (weak
solvent friction, or under-damped Kramers regime).
Therefore, even if one disregards the issue of collectiv-
ity, the results obtained in these works363,375,407 may
not be directly relevant to the experiments that were
conducted in the liquid phase.112,119 That said, as has
been argued in Ref. 363, the energy-diffusion-limited
regime is more prevalent than is commonly assumed for
chemical kinetics in liquid solvents.373,409–411 Further,
it seems the theoretical results in Fig. 22 closely resem-
ble the experimental results presented in Ref. 112, as
depicted in Fig. 19c.

Finally, in Ref. 228 exact quantum dynamics sim-
ulations, using the Hierarchical Equations of Motion
(HEOM) approach, were carried out for a model system
depicted in Fig. 22e. In this work, a reaction coordinate
was coupled to a dissipative solvent environment, a cav-
ity photon mode which is also coupled to a dissipative
bath composed of far-field radiation modes describing
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cavity loss (see Sec. 4.7).
In this fully quantum mechanical treatment, the

chemical kinetics process can be easily understood in
terms of solvent-mediated population transfer between
vibrational states. The molecular sub-system is initially
prepared in the ground vibrational state |ν0,R, 0⟩ (here
0 denotes no photon in the cavity) on the left well of
the potential energy surface (shown in Fig. 22e). Out-
side the cavity, the ground vibrational state on the left
reactant well |ν0,R, 0⟩ is thermally excited to the vibra-
tionally excited states such as |ν1, 0⟩. Then, following
a vibrational relaxation from the vibrationally excited
states to the ground vibrational state |ν0,P , 0⟩ on the
right (product) well, the forward reaction occurs. In the
weak solvent coupling (energy diffusion-limited) regime,
the chemical kinetics is dominated by the thermal ex-
citation process. When coupling to the cavity photon
mode, the molecular vibrational excitation is hybridized
with the cavity excitation, which is reflected in the ab-
sorption spectrum Fig. 22e (that resembles experimen-
tal observations in Fig. 19b and Fig. 20a). The thermal
excitation due to cavity loss mediated by the coupling of
cavity photon modes to other far-field (outside of cavity)
modes leads to the creation of a photon inside the cav-
ity which can be absorbed by the molecular sub-system
leading to the vibrational excitation. Therefore, cou-
pling to the cavity provides (in addition to the solvent-
mediated thermal excitation |ν0, 0⟩ → |ν1, 0⟩ outside
cavity) an additional pathway

|ν0,R, 0⟩ → |ν0,R, 1⟩ → |ν1, 0⟩, (204)

which leads to an enhancement of chemical kinetics.
Here, the first step is the thermal radiation fluctuation
promoted transition and the second step is mediated by
the quantum light-matter interactions. Since this mech-
anism requires strong hybridization between molecular
vibrational and cavity photonic excitation (for the sec-
ond step in Eq. 204), the resonance structure in rate
constant modifications appears as a much sharper fea-
ture, shown in Fig. 22f. Interestingly, the shape of the
rate constant modification profile (blue) is similar to the
absorption profile (magenta) in Fig. 22f, which closely
resembles the case in experiments,112,119 as illustrated
in Fig. 19. Importantly, this work reveals that the res-
onant cavity modification of chemical reactivity may
have quantum origins. However, the work in Ref. 228
is again limited to a single molecule. Since it is pro-
hibitively expensive to carry out such exact quantum
dynamics in the collective regime, the development of
approximate quantum dynamics methods (see Sec. 4.1)
that allow efficient quantum dynamics of a large ensem-
ble of molecules coupled to cavity photons will be vital
in resolving the mysteries of the vibrational polariton
chemistry.

5.6 Modifying Ground-State Electron
Transfer Reactions

The chemical rate constant for non-adiabatic electron
transfer reaction can be analytically computed using
the Marcus theory319,320,322 as provided in Eq. 167.
However, if the molecular system contains a quantum
degree of freedom (such as a vibration with frequency
ℏωvβ ≫ 1), the rate constant requires a quantum de-
scription beyond the simple Marcus theory (especially in
the inverted regime). This is because, with quantum de-
grees of freedom, the system can also access vibrational
excited states for which the driving force is no longer
just ∆G but is modified by nℏωv, where n is the quan-
tum number of vibrations and ωv is the vibrational fre-
quency. The above situation is precisely the case when
a non-adiabatic electron transfer reaction inside an op-
tical cavity is considered. Such a setup is schematically
shown in Fig. 23a for plasmonic cavity. Note that the
cavity frequency is either in the infrared regime or in the
UV-Vis region, but not matching any particular vibra-
tional transition or electronic transitions. Instead, the
cavity mode is directly coupled to the transition dipole
of the charge transfer process84 between the |D⟩ and
|A⟩ state, which is µDA.

Due to the presence of the cavity photon mode,
new photon-dressed donor and acceptor states, such as
|D⟩ ⊗ |n⟩ (donor state with n photons in the cavity)
and |A⟩⊗|n⟩ (acceptor state with n photons in the cav-
ity), become available for mediating the charge transfer
process. The potential energy surface for these states
along the charge transfer reaction coordinate (a collec-
tive solvent coordinate, which is often referred to as the
Marcus coordinate) is shown in Fig. 23b. The polariton-
mediated electron transfer rate constant can then be
computed by considering all possible reactive channels
|D⟩ ⊗ |n⟩ → |A⟩ ⊗ |m⟩. The chemical rate constant
in the presence of quantum degrees of freedom can be
computed using the Marcus-Levich-Jortner (MLJ) the-
ory412,413 as follows

kMLJ =
∑
n

Pn

∑
m

|Fnm|2

ℏ

√
πβ

λET
exp

[
−β (∆Gnm + λ)2

4λET

]
,

(205)
where λET is the reorganization energy (not to be
confused with the light-matter coupling strength in
Eq. 105), Fnm is the effective coupling among photon
dressed states |D⟩ ⊗ |n⟩ and |A⟩ ⊗ |m⟩, ∆Gnm = ∆G+
(m−n)ℏωc is the driving force between photon-dressed
states, and Pn = exp[−βnℏωc]/

∑
m exp[−βmℏωc] is

the thermal population of the corresponding cavity
mode. Ref. 84 investigated the modification of nona-
diabatic chemical rate constant inside an optical cav-
ity. In this work, the molecular system is coupled to
the cavity photon mode via the molecular dipole µ̂ =
µDD|D⟩⟨D| + µAA|A⟩⟨A| + µDA(|A⟩⟨D| + |A⟩⟨D|) where
µAA and µDD are the permanent dipoles and µAD is the
transition dipole. The authors84 (assuming that donor
and acceptor wells are of the same frequency) derive
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the coupling Fnm = VDASnm + ωcA0µDA[
√
nSn−1,m +

√
n+ 1Sn+1,m] where Snm = ⟨n|e−

i
ℏ p̂c

√
2

ℏωc
A0∆µ|m⟩

with ∆µ = µDD − µAA. In the absence of perma-
nent dipoles Snm → δmn and the coupling reduces to
Fnm = VDASnm+ωcA0µDA[

√
nδn−1,m+

√
n+ 1δn+1,m].

Fig. 23c presents the modification of the ground state
electron transfer rate when the molecule is coupled to a
high-frequency photon mode (ωc = 2 eV). Despite the
fact that this example does not pertain to the regime
of IR photons (or “VSC regime”), it clearly demon-
strates the fundamental principles of such cavity mod-
ifications on electron transfer reaction rate constant.
The red dashed line in Fig. 23c depicts the rate con-
stant as a function of driving force ∆G with one peak
at ∆G = −λET, which is the famous Marcus turnover
of the electron transfer rate constant. Inside the cavity,
the chemical rate (black solid line) shows two peaks, in-
stead of one. This additional peak that appears deep
in the Marcus inverted regime (where −∆G > λET)
is due to the additional channel |D, 0⟩ → |A, 1⟩ due
to the light-matter interaction via the electronic tran-
sition dipole moment µDA = ⟨D|µ̂|A⟩. For low photon
frequency ωc = 200 meV (panel b and panel e), the
second peak becomes merged with the first and leads
to a broadening of the overall rate profile shown in
Fig. 23e. In addition to this, suppression of the chem-
ical reactivity is also observed around the peak of the
rate curve. This suppression is due to the presence of
the permanent dipoles84 that reduces the diabatic cou-
pling between |D, 0⟩ and |A, 0⟩ by the factor Sm,n as
VDA · Snm = VDA exp

[
− 1

2 ((µAA − µDD)A0/ℏ)2
]
, a re-

sult that is obtained by performing the polaron trans-
formation,41,70,84 but can also be understood through
the polarized Fock state formalism (Sec. 3.1.2). Overall,
this work84 points out that the cavity photon mode can
act like high-frequency quantum vibration that modi-
fies the non-adiabatic electron transfer rate constant,
especially for driving forces in the inverted regime.

Ref. 70 followed up on the work of Ref. 84, using an
extended phase space path-integral framework,414–416

so-called non-adiabatic ring-polymer molecular dynam-
ics (NRPMD),417–419 to describe discrete electronic
states using mapping variables271,272 and the photon
field and nuclear DOF using the extend phase space
variables of the ring polymer. Using the RPMD frame-
work, the photon and nuclear degrees of freedom are
copied into multiple ‘beads’ in the extended phase
space, with the adjacent beads coupled through a Har-
monic spring, forming a ring-polymer (shown schemat-
ically in Fig. 23d). This ring polymer, together with
the electronic mapping variables, is evolved classically
through the corresponding equation of motion. Despite
the classical evolution, NRPMD effectively captures all
possible quantum effects, including the electronic non-
adiabatic effect and the nuclear quantum effects, as well
as similar effects exhibited by the photonic DOF qc. Ref.
70 shows that even for a photon frequency as high as
ωc = 500 meV, the rate constant predicted by the di-
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Figure 23: Cavity modified thermally activated non-
adiabatic electron transfer reaction. (a) Schematic
illustration of a plasmonic cavity coupling to an electron
transfer reaction. (b) Potential energy surface of donor and
acceptor dressed states. (c), (e)-(f) Cavity modification of
electron transfer rate at (c) ωc = 2 eV, (e) ωc = 0.2 eV
and at (f) ωc = 0.01 eV. (d) Schematic illustration of the
ring-polymer description of a cavity photon mode. Panels
(a),(c), and (e) are reproduced with permission from Ref.
84. Copyright 2019 American Institute of Physics. Panels
(b),(d), and (f) are reproduced with permission from Ref.
70. Copyright 2021 American Institute of Physics.

rect NRPMD simulations provides the same result as
the rates obtained from the analytic MLJ theory in
Eq. 205 (that uses the quantum description of a cav-
ity photon mode), which matches the analytic result
perfectly for the model calculation presented in panel
(c). Recent work420 has also used the adiabatic limit
of RPMD (or referred to as path-integral MD) descrip-
tion of photon mode to perform molecular dynamics
simulation using ‘real’ molecular systems (using classi-
cal force fields) beyond any simple model systems. Re-
garding such development of semiclassical methods for
accurately capturing such cavity-modified reactivities,
Ref. 421 introduced a Linearized Semi-classical approx-
imation with Fermi’s golden rule (FGR) rate theory,
which can achieve the cavity-induced rate enhancement
of such non-adiabatic electron transfer reactions with
high accuracy.

Ref. 70 also investigated the cavity modification of
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a non-adiabatic electron transfer reaction when photon
frequency is very low, such that the classical description
of the photon mode becomes accurate. With a classical
treatment of the photon mode, the diabatic coupling
becomes time-dependent and is a function of the photon
coordinate, such that VDA(qc) = V 0

DA +
√

2ω3
cA0µDAqc,

In such a case, the photon mode plays the role of a
Peierls coupling mode.70,310,312,422 For such fluctuating
diabatic coupling the chemical rate is given by

kET =
|VDA|2 + σc

ℏ

√
βπ

λET
exp

[
− β

(∆G+ λET)2

4λET

]
,

(206)

where σc = 2ω3
cA0µDA⟨q2c ⟩ with ⟨q2c ⟩ = 1/βω2

c for classi-
cal distribution of the photon mode. Thus, the reaction
rate is enhanced, (as shown in Fig. 23f) when coupled
to the cavity. This is due to the modification of the
diabatic coupling due to the photonic mode serving as
a fluctuating DOF that mediates the donor-to-acceptor
coupling (commonly referred to as the Peierls coupling).
It must be noted that while these works70,84 show the
modification of the non-adiabatic electron transfer reac-
tions for photon frequencies in the IR regime, the pho-
ton mode is coupled to the transition dipole between
the donor and acceptor diabatic states (or a give per-
manent dipole), not any explicit vibrational excitation
in the system.

6 Polariton Chemistry under the Col-
lective Coupling Regime

Most experiments of polaritonic systems involve many
molecules coupled to many photonic modes in opti-
cal cavities. Although there have been exciting works
demonstrating the possibility of strongly coupling a sin-
gle molecule to a plasmonic cavity mode,20,394,395,423 it
is understandably difficult (if not impossible) to achieve
strong coupling in a Fabry–Pérot micro-cavity in the
single molecule limit. This is because the relatively
large cavity mode quantization volume in Fabry–Pérot
micro-cavities leads to a negligible coupling for a single
molecule.

When a large number of molecules are simultaneously
coupled to the cavity, the effective coupling strength
is scaled by

√
N where N is the number of molecules

(as will be discussed below). This collective coupling
allows for significant Rabi-splitting despite the vanish-
ingly small cavity coupling per molecule. Consequently,
there has been a recent strong push by the commu-
nity to better understand the collective coupling phe-
nomenon from a rigorous theoretical perspective. In
recent years, there have been a number of theoretical
advancements that allow direct simulation of the quan-
tum dynamics of a single cavity mode coupled to many
molecules8,36,94,104,212,424 or many cavity modes cou-
pled to many molecules .120,123,141,142

In the previous three sections of this review (see
Sec. 3, Sec. 4, and Sec. 5), the discussion has been fo-

cused on the properties, dynamics, and chemical trans-
formations enabled by coupling a single molecule to a
cavity mode. As we will see, the conclusions drawn
in these previous sections that operate in the single
molecule limit cannot be directly applied to the more
experimentally relevant case of many molecules coupling
to the quantized field inside an optical cavity. In this
section, we will review recent theoretical works that
investigate the modification of chemical and physical
properties of matter in the collective coupling regime. In
Sec. 6.1 we review computational works that study mod-
ifications to photophysical properties, such as absorp-
tion, photoluminescence, transport, decoherence, and
population dynamics. In Sec. 6.2, we discuss theoreti-
cal works that show that charge transfer reactions can
be modified in the collective coupling regime. Next, in
Sec. 6.3, we review works that demonstrate the possi-
bility of modifying chemical reactivity in the collective
regime as well as works that provide conceptual insights
on such processes. Finally, in Sec. 6.4, we discuss the un-
resolved mysteries of vibrational polariton chemistry in
the collective regime and review some interesting works
that have attempted to provide a resolution.

6.1 Polariton Photophysics in the Col-
lective Coupling Regime

In this section, we review theoretical works that shed
light on interesting photophysical processes that are
enabled or modified when coupling a large ensemble
of molecules to one or more cavity photonic modes.
An appealing simplified picture can be obtained by us-
ing the Tavis-Cummings Hamiltonian (see Eq. 12) for
an ensemble of identical molecules coupled to a single
cavity photon mode. In the Tavis-Cummings Hamil-
tonian, N singly excited molecular states {|EJ , 0⟩ ≡
|g1, ...eJ , gJ+1...⟩ ⊗ |0⟩} (one molecule is excited while
rest of the molecules are in their ground state with zero
photons in the cavity) couples to the cavity excited state
|G, 1⟩ ≡ |g1, g2...⟩ ⊗ |1⟩ (all molecules in their ground
state with one photon in the cavity). Due to this cou-
pling, a lower polariton, upper polariton, and N−1 dark
states are formed, as shown in Fig. 24a. For identical
molecules, the symmetry of the problem allows one to
define the collective bright state |B, 0⟩ = 1√

N

∑
n |EJ , 0⟩

and other orthogonal states |Dk, 0⟩ =
∑

n Cn,k|EJ , 0⟩
such that ⟨B, 0|Dk, 0⟩ = 1√

N

∑
n Cn,k = 0. As a re-

sult, the bright state couples collectively to |G, 1⟩ with
a coupling strength

√
Ng where g is the coupling be-

tween |EJ , 0⟩ and |G, 1⟩. Notably, the |Dk, 0⟩ states
do not couple to the |G, 1⟩ state, and thus are referred
to as the dark states. The coupling

√
Ng leads to the

formation of the |+⟩ (upper polariton) and |−⟩ (lower
polariton) states that are linear combinations of |G, 1⟩
and |B, 0⟩ (see more in Eq. 12 and onward) as depicted
in Fig. 24a.

The formation of the polariton states |±⟩ is readily
visible in the absorption spectra of the molecule-cavity
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Figure 24: Modification of molecular photophysics in the collective coupling regime. (a) Schematic diagram of
N identical emitters coupling to a cavity excitation leading to N − 1 dark states and 2 bright polariton states. Absorption
spectra of (b) uncoupled molecules and (c) an ensemble of molecules coupled to the cavity. (d) Population dynamics of an
ensemble of molecules coupled to a lossy cavity photonic mode. Simulated (e) absorption and (f) photoluminescence spectra
for an ensemble of molecules coupled to several cavity photonic modes. (g) Schematic illustration of molecules coupled to
plasmonic cavity arrays. (h) Time evolution of the polaritonic wavepacket and its excitonic and photonic components. Panel
(a) is reproduced with permission from Ref. 424. Copyright 2017 American Chemical Society. Panels (b)-(d) are reproduced
with permission from Ref. 104. Copyright 2019 American Chemical Society. Panels (e)-(f) are reproduced with permission
from Ref. 120. Copyright 2021 American Institute of Physics. Panels (g)-(h) are reproduced with permission from Ref. 134.
Copyright 2022 American Chemical Society.

hybrid system. Fig. 24b presents the absorption spec-
tra of the rhodamine molecules outside the cavity which
peaks around the electronic transition |G⟩ → |E⟩. Due
to the formation of |±⟩, the absorption spectra are split
(Rabi-splitting) when coupled to a cavity as shown in
Fig. 24c, with the lower (upper) energy peak corre-
sponding to the lower (upper) polariton. Fig. 24c also
shows the increase in Rabi-splitting as more molecules
are coupled. Note that the dark states are not seen in
the absorption spectra because they are optically dark.

This simplified picture, however, does not reveal the
true complexity of the cavity-molecule hybrid systems.
The molecular excitations are not truly degenerate in
energy (thus the broadening of the absorption spectra
in Fig. 24b), and their energies fluctuate in time due to

their dependence on the nuclear motion. The nuclear
motion also induces non-adiabatic transitions between
the upper polariton, lower polariton, and dark states,
which in turn modify nuclear dynamics. Thus, direct
dynamical simulations are an appealing approach to in-
vestigating the complex dynamical interplay between
photons, molecular vibrations, and electronic degrees
of freedom.

Ref. 424 implemented a QM/MM excited state molec-
ular dynamics approach to simulate a large ensemble of
molecules coupled to a cavity photon mode. Specifically,
they implemented the mean-field Ehrenfest approach,
where the electronic and photonic degrees of freedom
are treated quantum mechanically while the nuclear de-
grees of freedom are evolved classically. They used the
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Figure 25: Quantum dynamics of nanoplatelets coupled to a cavity. (a) Schematic illustration of nanoplatelets cou-
pled to a cavity mode. (b)-(c) Time-dependent polaritonic energies for a representative trajectory obtained with numerical
simulation with a large detuning (b) and a small detuning (c). (d)-(i) Photo-luminescence spectra obtained at increasing
detunings from left to right experimentally (d-f) and theoretically (g-i) using direct quantum dynamics simulations. Repro-
duced with permission from Ref. 32. Copyright 2021 American Chemical Society.

Tavis-Cummings Hamiltonian (see Eq. 12), obtaining
the energies and transition dipole matrix element for
each individual molecule on a separate CPU/GPU in
parallel, thus allowing them to perform large-scale ex-
cited state molecular dynamics inside an optical cavity.

Using the same on-the-fly quantum dynamics ap-
proach, Ref. 104 investigated the relaxation of strongly
coupled molecule-cavity systems. In this work, the au-
thors study ensembles of rhodamine molecules coupled
to a single radiation mode. They find that the non-
adiabatic transitions between the dark states, upper,
and lower polaritons prolong the relaxation process of
the excited molecule-cavity hybrid system. In an empty
cavity, when the system is prepared in the |1⟩ (1 pho-
ton in the cavity) state, the cavity quickly relaxes to the
vacuum states due to cavity loss (see details in Sec. 4.7).
When the cavity-molecule hybrid system is prepared in
the |±⟩ states, the photoemission rate is controlled by
both the cavity loss (as they have significant photonic
character) as well as the nonadiabatic transitions to the
dark-state manifold. This is because the lower/upper
polariton population is transiently transferred to the
dark-state manifold, which does not have photonic con-
tributions, thus suppressing cavity loss. This effect is
shown in Fig. 24d. After initial excitation to the lower
polariton (pink solid line), fast relaxation to the ground
state is observed at very short times. Then at ∼ 30
fs, a rise in the dark state population is observed and
consequently, the relaxation to the ground state is sup-
pressed marked with the ground state population ris-
ing at a slower rate at longer times, for the reasons
mentioned before. This is in line with experimental
works that show cavity-molecule hybrid systems having

a much longer lifetime than the bare cavity.107,425

As mentioned in Sec. 2.6.2, a realistic description of
the cavity radiation must account for photon disper-
sion. Ref. 120 considers the photon dispersion and uses
the generalized Travis-Cummings model to simulate the
photoexcited dynamics in an ensemble of molecules cou-
pled to a distribution of cavity modes. The polari-
ton dispersion is shown in Fig. 24e which presents the
absorption (or visibility) spectra of the multi-molecule
multi-cavity setup computed as426

IA(ω, k) =
〈∑

n

|⟨EJ |G, 1k⟩|2e
− (∆EJ−ω)2

2Γ2
c

〉
, (207)

where |EJ⟩ are the polariton states that are the eigen-
state of the polariton Hamiltonian ĤGTC−T̂R where T̂R
is the nuclear kinetic energy operator, ∆EJ = EJ −EG

with EG as the ground state energy of the light-matter
hybrid system, Γc is a broadening parameter that ac-
counts for various sources of dissipation such as cavity
loss, and ⟨...⟩ represents the average over different nu-
clear configurations. The authors find that an initial
excitation to the upper polariton branch quickly decays
to the dark states which then transfer population to the
lower polariton. This relaxation process is reflected in
the photoluminescence (PL) spectra shown in Fig.24f.
This is because unlike the absorption spectra in Fig.24e,
the PL spectra depend on the populations of the polari-
ton states and can be computed as

IPL(ω, k) =
〈∑

a

ρa(t)|⟨Ψa|G, 1k⟩|2e
− (∆En−ℏω)2

2Γ2
c

〉
,

(208)
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Figure 26: Entropy reordering theory. (a)-(b) Polari-
tonic states ordered according to their energy (a) and free-
energy energy (b). Note that LP lies above dark states in
(b) due to entropic contribution. (c) Entropic difference be-
tween dark states and the lower polariton at two different
light-matter couplings, gc = 50 cm−1 (red dots) and 75 cm−1

(cyan dots). Scaling of entropic contribution (kKTN logN
roughly estimates maximum entropy of dark states) to the
dark state free energy as a function of collective light-matter
coupling (equivalently N). Adapted from Ref. 427 with per-
missions. Copyright 2020 American Chemical Society.

where ρa(t) is the steady-state (non-equilibrium photo-
driven condition) population of the ath polariton state,
|Ψa⟩, at a delay time t after photoexcitation.

Ref. 32 simulated the PL spectra using a similar ap-
proach and analyzed the relaxation process from the
upper polariton to the lower polariton through the dark
state in an ensemble of nanoplatelets coupled to cavity
radiation (as schematically illustrated in Fig. 25a). This
combined theoretical and experimental study demon-
strates that at small exciton-photon detunings, the
phonon-assisted nonadiabatic transitions lead to the de-
pletion of the upper polariton population and the trans-
fer of population to the lower polariton branch. The PL
spectra obtained experimentally and theoretically are
shown in Fig. 25d-f and Fig. 25g-i, respectively.

Fig. 25b-c present time-dependent polariton eigenen-
ergies that fluctuate due to the evolution of phonons
(in the mixed-quantum classical picture). In Fig. 25b
the photon frequency is much lower (off-resonant) than
the molecular excitation. As a result, there is no sub-
stantial population transfer from the upper polaritons
and the dark states (both of which are primarily exci-
tonic) to the lower polariton (primarily photonic). As a
consequence of this, the lower polariton, despite hav-
ing a large photonic character, does not show up in
the PL spectra since it does not get populated. At the
same time even though the upper polariton and the dark
states are substantially populated, they appear dark in

the PL spectra due to negligible photonic character.
Fig. 25c, shows the time-dependent polariton eigenen-

ergies when photon frequency is close to the molecular
excitation (∼ resonant). As the upper polariton is en-
ergetically close to the dark states, nonadiabatic tran-
sitions lead to the transfer of population from the up-
per polariton to the dark states. In the same way, the
lower polariton gets populated by dark states through
nonadiabatic transitions. Thus, at low detunings (or at
resonance), the PL intensity congregates at the lower
polariton as a result of both significant population and
photonic character. Thus, in summary, this work32

concludes that the congregation of the PL intensity re-
sults from an interplay among phonon-mediated nona-
diabatic transitions between polaritons, cavity loss, and
the angle-dependent photonic character of the polariton
branches. The resulting angular resolved PL spectra
with various detuning (at zero angle) obtained experi-
mentally and through direct quantum dynamics simu-
lations are presented in Fig. 25d-f and Fig. 25g-i respec-
tively.

In Figs. 25d-f and Figs. 25g-i the Rabi-splittings are
nearly the same while the detunings at zero angle ∆E
are varied. Figs. 25d-f (and Figs. 25g-i) correspond to
∆E = −15.7 meV, ∆E = −29.6 meV and ∆E = −34.6
meV, respectively. Overall, it can be observed that the
congregation of the PL spectra directly depends on ∆E.
At low ∆E the congregation of PL on the lower polari-
ton is observed at low angles since the resonant condi-
tion is met at those angles, at which significant nonadi-
abatic transitions take place (Fig. 25d and g). Similarly,
at higher ∆E the resonant condition is met at a higher
angle, and as a result, the congregation of PL on the
lower polariton is observed at higher angles (Fig. 25e-f
and h-i). The theoretical simulations capture this qual-
itative trend Fig. 25h-i thus verifying our theoretical
understanding.

The population transfers among polariton states in
the works mentioned above are rationalized by consid-
ering their relative energetic ordering such that popu-
lation dynamics flow downhill, which is reminiscent of
Kasha’s law.428 Based on this picture, for a typical en-
ergetic ordering of polaritonic states shown in Fig. 26a,
we anticipate a relatively small upper polariton pop-
ulation and a relatively large lower polariton popula-
tion. Ref. 427 points out that this picture of energetic
downhill population dynamics could be misleading as it
ignores the entropic contribution which could make a
dominating contribution to the free energy and dictate
long-time populations. For example, while lower polari-
tons can lie energetically well below the dark states, the
entropy of the lower polariton (that is in a delocalized
superposition state) is much smaller than that of the lo-
calized (localized especially when considering disorder)
dark states. Thus the total free-energy F = E − T · S,
with temperature T , energy E and entropy S may re-
order polaritonic states as shown in Fig. 26a-b.

To gain an intuitive understanding of this entropic
reordering of polaritons,427 consider the single excited
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subspace spanning the N excitonic states {|En, 0⟩} of
the molecular subsystems that is coupling to a cav-
ity excitation |G, 1⟩ (one photon in the cavity). As
explained before, such as in Fig. 24a and in Sec. 1.2,
each of the |En, 0⟩ states are coupled to the |G, 1⟩ state
through the light-matter coupling, gc, and this leads to
the formation of a lower polariton, upper polariton, and
N − 1 dark-states. In reality, these polaritonic states
also interact with their environment. For example, the
molecular excitation {|En, 0⟩} at site n is also interact-
ing with some local dissipative environment, which will
cause static disorder of the excitonic energies {EJ}. To
account for the interaction with the local environment,
the authors427,429 sample {EJ} from a random Gaus-
sian distribution. For each realization of {EJ}, the cor-
responding polaritonic eigenstate |Ψa⟩ can be computed
as |Ψa⟩ =

∑
j c

a
j |Φj⟩, where |Φj⟩ ∈ {|EJ , 0⟩, |G, 1⟩} and

caj = ⟨Ψa|Φj⟩, with the corresponding density matrix
|Ψa⟩⟨Ψa| =

∑
i,j(c

a
i )∗caj |Φj⟩⟨Φi|. The authors compute

the density matrix ρ̂a for the ath polaritonic eigenstate
averaged over random realization of {EJ} as

ρ̂a =
∑
ij

〈
(cai )∗caj

〉
|Φj⟩⟨Φi| (209)

where
〈
...
〉

denotes average. With this, the von Neu-
mann entropy Sa for ath polaritonic state can be com-
puted as

Sa = −kB Tr[ρ̂a ln ρ̂a]. (210)

When computing the free energy associated with each
polaritonic state, it is possible to have the “lower” po-
lariton lying above the dark states because of its lower
entropic contribution to its free energy as schematically
depicted in Fig. 26b. Fig. 26c presents numerical re-
sults for gc = 50 cm−1 and 75 cm−1 represented by red
and cyan dots respectively, with N = 2000 and a Gaus-
sian disorder with a standard deviation of 25 cm−1 at
T = 300 K. In both cases, a substantial number of dark
states lie above the dashed solid line that is represented
as EDark − ELP = T (SDark − SLP). The reordering be-
tween dark states and the lower polariton occurs for
T (SDark − SLP) > EDark − ELP. Therefore such dark
states lie below the “lower” polariton when considering
free energy.

The size-scaling of this effect is semi-quantitatively in-
vestigated in Fig. 26d. Note that EDark −ELP ∝

√
Ngc

while the maximum entropy of the dark states is ap-
proximately kB logN , for large N . From Fig. 26d it
is evident that, for small N , the entropic contribution
could dominate the free-energy ordering of polaritons,
while at large N the energy gap between the lower po-
lariton and the dark states will dominate. This can be
also verified analytically by simply considering the ratio

lim
N→∞

T (SDark − SLP)

EDark − ELP
∝ lim

N→∞

logN√
N

= 0.

Overall, due to entropic contribution to the free energy,
the lower polariton is more reactive to population trans-
fer processes to higher-energy states (i.e. dark states)
than it is generally anticipated when only considering
their energetic ordering.427

Coupling to the cavity can also enhance excitation
energy transfer and lead to faster energy transport,
especially in materials. Using a generalized Tavis-
Cummings Hamiltonian, Ref. 134 simulates the trans-
port properties of organic crystals when coupled to plas-
monic nanoparticle arrays as illustrated in Fig. 24g.
They find that the propagation length when coupling to
a cavity is significantly larger than outside the cavity.
Their simulations suggest that non-adiabatic transitions
in combination with cavity decay dominate the trans-
port mechanism and set an upper limit to the distance
over which energy can be transported.

Ref. 123 investigates ballistic transport in exciton-
polaritons by tuning the polariton-phonon through
light-matter interactions. The polariton-phonon cou-
pling can be modified because the exciton couples to
the phonon but the cavity excitation does not, and as
a result, the phonon coupling strength directly depends
on the excitonic character of the polariton which can
be modulated by detuning. They find that the ballistic
motion of polariton propagation can be observed even
at high exciton content (∼ 25% excitonic) but with a
reduced group velocity. Their quantum dynamics sim-
ulations indicate that the origin of this group velocity
re-scaling originates from a transient localization pro-
cess induced by the weak interactions to phonon.123

6.2 Polariton-Mediated Charge Trans-
fer in the Collective Coupling
Regime

In this section, we will review works that have pro-
posed possible ways to modify photoexcited electron
transfer reactions in the collective regime. Typical pho-
toexcited electron transfer reactions occur between an
optically bright donor state to an optically dark accep-
tor.430–434 As expected, the bright donor states have a
large transition dipole (from the ground state) while the
dark acceptors have a negligible transition dipole. This
asymmetry can be exploited in a cavity, as cavity ra-
diation only couples to optically bright states (here the
donor state), allowing us to tune such chemical reactiv-
ity.8,12,324

An optical cavity can modify photoexcited electron
transfer through a wide range of mechanisms. To appre-
ciate this, consider the polariton states |±⟩ at resonance
given by

|±⟩ =
1√
2

[ 1√
N

N∑
J

|DJ , 0⟩ ± |G, 1⟩
]

(211)

where |DJ , 0⟩ is the state where the Jth molecule is in
its donor excited state while the rest of the molecules
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are in their ground states with 0 photons in the cavity
and |G, 1⟩ represents the molecules in their ground state
with 1 photon in the cavity.

First, note the cavity-mediated electronic coupling
between |±⟩ and |AJ , 0⟩ state is ⟨±|Ĥpl|AJ , 0⟩. Here
only the |DJ , 0⟩ component in the |±⟩ is coupled to the
|AJ , 0⟩ state through Ĥen. This leads to the effective
electronic coupling

⟨+|Ĥpl|AJ , 0⟩ =
cos ΘN√

N
VDA (212a)

⟨−|Ĥpl|AJ , 0⟩ =
sin ΘN√

N
VDA, (212b)

with the mixing angle ΘN (see under Eq. 14). Us-
ing these cavity-modified quantities, the charge transfer
rate from |±⟩ to all possible final states {|AJ , 0⟩} is ex-
pressed as

k±c =

N∑
J

⟨±|Ĥpl|AJ , 0⟩2

ℏ

√
πβ

λ±
exp

[
− β

(∆G±
c + λ±)2

4λ

]

=
|V ±

c |2

ℏ

√
πβ

λ±
exp

[
− β

(∆G±
c + λ±)2

4λ

]
, (213)

where to arrive at the second line, we have explicitly
evaluated the sum in the first line equation (which are N
identical terms) and used the expression of the coupling
(in Eq. 212a). Here ∆G±

c and λ± are the polariton-
mediated driving force and reorganization energy (be-
tween |±⟩ and |AJ , 0⟩) respectively, and the following
effective electronic coupling

V +
c = cosΘNVDA; V −

c = sinΘNVDA, (214)

where ΘN is the mixing angle defined under Eq. 14. The
cavity QED process can thus mediate the charge trans-
fer process by modifying the driving force ∆G±

c , the
reorganization energy λ±c and effective electronic cou-
pling V ±

c . These quantities, and consequently the ET
dynamics, can be tuned by changing the photon fre-
quency ωc, as well as the light-matter coupling strength
ℏgc. Thus, coupling molecules to the cavity opens up
new possibilities to control ET kinetics by using funda-
mental properties of quantum light-matter interaction.

Ref. 8 analyzes the effect of collective coupling on
the modification of such excited state electron transfer
reactions via the modification of reorganization energy
with the key results shown in Fig. 27a-b. The bare
donor and acceptor states are displaced along the nu-
clear coordinate (along vibrational DOF) and thus have
substantial reorganization energy relative to the ground
state (Fig. 27a). In this example, the donor state min-
ima RD

0 < 0 and the acceptor state minima RA
0 > 0 are

shifted in opposite directions with respect to the ground
state minima (set as the origin). Thus, the reorganiza-
tion energy between the donor and acceptor states is
the sum of the reorganization energies λD + λA where
λD = 1

2 (ωDR
D
0 )2 is the of the donor reorganization en-

(d)

(e)

(b)(a)

|𝐷⟩ |±⟩

|𝐴⟩

|𝐺⟩

0𝑅0
𝐷 𝑅0

𝐴

𝑁

(f) (g)

0 𝑚𝑒𝑉

ℏΩ𝑅 𝑁 = 20 meV

10 meV
𝑃𝐴

Time (fs)0 300

2𝛾𝜈

5𝛾𝜈

Δ𝐸 = 0

Δ𝐸 = 0
N = 104

(c)

Figure 27: Modifying charge transfer reactions in
the collective regime (a) Schematic of the ground |G⟩,
donor |D⟩, acceptor |A⟩, and polariton |±⟩ potentials. (b,c)
Charge transfer rate as a function of (b) the number of
molecules N at various differences in vibrational energy
∆E = ωDA − (mD − mA)ων = 0 (red), 2γν (blue), and
5γν , for λD = −λA =

√
2 and (c) as a function of the

donor energy shift λD/λA with λA =
√
2 and ∆E = 0.

Here, γν = 0.01ων is the vibrational line-width, ων is the
vibrational frequency with kBT = 0.1ℏων . (d) Schematic
illustration of a Fabry-Perot cavity depicting electron trans-
fer in the collective regime. (e) Electron transfer rate as a
function of light-matter coupling for various cavity loss rates
κ. (f) Schematic of multiple donor (D) species coupled to
an acceptor (A) inside a Fabry-Perot cavity. (g) The prob-
ability of ET from a donor (D) to acceptor (A) as a function
of time for a various number of molecules: 0 (black), 10,
(red), and 20 (blue) meV. Panels (a,b,c) were adapted from
Ref. 8 with permissions. Copyright 2016 American Institute
of Physics. Panels (d,e) were adapted from Ref. 324 with
permissions. Copyright 2021 American Institute of Physics.
Panels (f,g) were adapted from Ref. 435 with permissions.
Copyright 2021 American Institute of Physics.

ergy relative to the ground state with ωD as the donor-
well frequency, and λA = 1

2 (ωAR
A
0 )2 is the acceptor
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reorganization energy relative to the ground state with
ωA as the acceptor well frequency. When there are N
donor-acceptor pairs whose ground-donor transition is
coupled to a cavity, the resulting polariton states are
super-positions of the donor states with 0 photons in
the cavity and the and the ground state with 1 photon
in the cavity.

In particular, consider the polariton states |±⟩ =
1√
2
[ 1√

N

∑N
J |DJ , 0⟩± |G, 1⟩] at resonance, where |DJ , 0⟩

is the state where the Jth molecule is in its donor excited
state while the rest of the molecules are in their ground
states. The consequence of the 1/

√
2N factor in front

of the donor states in Eq. 211 is that the reorganization
energy of these polariton states is proportional to the
donor reorganization energy times 1/N . This can be
seen as a shift of the polariton parabolas towards the
ground state configuration (which is closer to the ac-
ceptor state) as N increases (Fig. 27a). In the limit of
large N , this polariton reorganization energy goes to 0,
which is known as polaron decoupling. Note that this
effect also applies to the donor dark states, but does not
apply to the acceptor states, which are uncoupled from
the cavity in this example and thus retain their original
reorganization energy relative to the ground state.

The consequences of polaron decoupling are demon-
strated in Fig. 27b. The reduction of the reorganization
energies of the polariton and dark states relative to the
ground state changes the reorganization energy of these
states relative to the acceptor states, thus directly im-
pacting the Marcus transfer rate. Fig. 27b shows the
effect of increasing the number of molecules while main-
taining the same Rabi splitting. In this case, the in-
crease in N , and consequential decrease in λD, cause an
increase in the cavity-modified ET rate relative to the
rate outside the cavity. However, this increased relative
rate eventually plateaus at large N since λD nears its
limit of 0. The effect of the ratio of λD to λA in the large
N limit is examined in Fig. 27c. Depending on the rela-
tive magnitude and sign of the reorganization energies,
λD versus λA, the many-molecule cavity may experience
an increased or decreased rate of electron transfer, with
the largest rate increases seen at very large relative λD
values. This demonstrates that light-matter coupling
can have a very system-dependent effect on the rate
due to polaron decoupling.

The polariton-mediated charge transfer dynamics can
also be affected by cavity loss, particularly in relation
to the strength of laser driving as shown in Fig. 27d-
e, adapted from Ref. 324. In this work, a Lindblad
driving/decay model was constructed to describe charge
transfer in a driven and lossy cavity (Fig. 27d). Both
the cavity loss rate κ and laser driving to the |G, 1⟩ state
κ+ were independently varied to determine their effects
on the charge transfer rate inside the cavity. Even for
laser driving rates orders of magnitude smaller than the
loss rate, an increase of charge transfer rate relative to
outside the cavity was observed (Fig. 27e) which grew
for larger relative driving strengths. These rates also
varied as a function of the strength of the light-matter

coupling relative to the cavity loss.
The collectivity of light-matter coupling can also fa-

cilitate a different arrangement of charge transfer reac-
tion, a so-called “super-reaction” as shown in Fig. 27f-g,
adapted from Ref. 436. In this reaction, several donor
molecules are coupled to a single acceptor molecule
(Fig. 27f). This arrangement allows charge from any of
the donors to transfer to the acceptor molecule, which
allows for an increase in rate as N becomes larger. In
particular, the donor-acceptor coupling in the matter
Hamiltonian has the form

Ĥsup
DA =

N∑
j

VDA(|DJ , 0⟩⟨A, 0| + |A, 0⟩⟨DJ , 0|), (215)

and the coupling between the upper polariton and the
acceptor state at resonance is

V +
c = ⟨+|Ĥsup

DA |A, 0⟩ =

N∑
j

√
1

2N
VDA =

√
N

2
VDA,

(216)
such that the coupling strength between the upper po-
lariton and the acceptor increases as

√
N . This is in

stark contrast to the case when only individual pairs
of donor and acceptor molecules are coupled and the
coupling strength scales as 1/

√
N (see Eq. 212a). Addi-

tionally, the effective reorganization energy in the large
Rabi splitting regime between the upper polariton and
the acceptor is λ+A = Nλ thus the reorganization en-
ergy of the polariton states scales as N . The rate con-
stant at resonance is thus

k±c =
N |VDA|2

2ℏ

√
πβ

Nλ
exp

[
− β

(∆G±
c +Nλ)2

4Nλ

]
. (217)

The super-reaction rate thus has a
√
N dependence in

its prefactor as well as an N dependence in the shoul-
der of the negative exponential that scales as e−N when
Nλ ≫ ∆G±

c . The consequence of these scalings is that
there exists some optimal value of N that maximizes
the rate constant in Eq. 217 before the e−N scaling kills
the rate for larger N . The main principle behind why
cavities can enhance super-reaction systems is that the
protection of coherence between the donor molecules is
especially important to maximize transfer rates to the
acceptor molecule. Coupling to the cavity increases the
coherence between these donor molecules by encourag-
ing delocalized polariton and dark state formation. This
ultimately leads to an increase in the acceptor popula-
tion versus outside the cavity (Fig. 15g).

Ref. 437 investigates the possibility of modifying free
charge carrier generation as in a system composed of
oligothiophene donors and fullerene acceptors when cou-
pling to the cavity. They model the oligothiophene
as a chain containing N Frankel excitation sites (one
electron and one hole is located at a site) |XTJ⟩ ≡
|De

J⟩ ⊗ |Dh
J⟩, with e and h representing an electron and

a hole, whose nearest neighbors are coupled (|XTJ⟩ is
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coupled to |XTJ+1⟩). They treat the fullerene molecules
by an effective, coarse-grained super-molecule, such that
there is one acceptor state |Ae

0⟩ which is localized on
the fullerene super-molecule. As a result, there exists
N charge transfer states |CTJ⟩ = |Ae

0⟩ ⊗ |Dh
J⟩, that is

electron localized on the fullerene (super-molecule) and
a hole localized on the Jth site on the oligothiophene,
which couples to its neighboring |CTJ+1⟩ state (similar
to the |XTJ⟩). In their analysis, they restrict them-
selves within the single excited subspace such that when
considering the cavity they are considering the sub-
space spanning {|XTJ , 0⟩, |CTJ , 0⟩, |G, 1⟩}, where |G, 1⟩
is ground state of the matter with 1 photon in the cav-
ity. Due to the light-matter interactions, each |XTJ , 0⟩
couples to the |G, 1⟩} state. Finally, |XT0⟩ is coupled
only to the |CT1⟩ state as the fullerenes are assumed to
be spatially close to the i = 1 site of the oligothiophene.

The main idea of this work is to use the collective cou-
pling of |G, 1⟩ to the {|XTJ , 0⟩} states to enhance free
charge carrier generation. Due to the collective Rabi-
splitting that scales as

√
N where N (see Fig. 1d) is

the number of sites, a lower polariton, upper polariton,
and N − 1 dark states are formed. Because the lower
and upper polaritons are energetically shifted, they can
be brought closer or further away from the {|CTJ , 0⟩}
states thereby modifying the free charge carrier genera-
tion. They show that by such secondary hybridization,
that is between the lower polariton and the |CT1, 0⟩,
the free charge carrier generation is enhanced, as these
two states are energetically brought closer through col-
lective light-matter coupling. However, they also show
that when considering cavity loss, the generation of free
charge carrier is actually suppressed as the lower po-
lariton has significant photonic character. Overall, they
find that free charge carrier generation can be enhanced
at short timescales (shorter compared to the cavity life-
time) but is suppressed due cavity loss at longer times.

6.3 Polariton Photochemistry in the
Collective regime

In this section, we will review theoretical works that
propose the modification of photochemical reactivity in
the collective regime. This is relevant for the present
experimental setups3,30,211 where the individual light-
matter coupling remains vanishingly small but the col-
lective Rabi-splitting is substantial due to the scaling
by

√
N with N as the number of molecules.

Ref. 306 shows that when a mixture of photo-reactive
molecules and photo-nonreactive molecules is strongly
coupled to the same cavity mode, photoexcitation to
the lower polariton can be used to enable reactions in
the photo-reactive molecules. The main idea of this
work follows from Kasha’s rule for the molecule-cavity
hybrid system137,306,424 which suggests that polaritonic
excitations relax into the lowest energy state available
to the cavity-molecule system. They use this to funnel
energy, initially deposited to the lower polariton, to a
molecule that can undergo a photochemical reaction to

energy levels below the lower polariton. Through direct
on-the-fly atomistic simulations, the author shows that
collective strong coupling can be utilized to enable re-
activity in a few photo-reactive molecules embedded in
a large ensemble of non-reactive molecules.

Ref. 212 shows that chemical reactions in an ensemble
of molecules can be triggered by a single photon when all
molecules are coupled to a cavity photon mode. They
represent each molecule with a one-dimensional reac-
tion coordinate resembling an isomerization reaction.
The ground state potential (blue solid line in Fig. 28a)
is characterized by a double-well potential with a large
barrier between the left and the right wells correspond-
ing to the product and reactant, respectively. As also
explained before (such as in Fig. 13e), the excited state
potential energy landscape for a single molecule can be
modified by coupling to cavity (with a specific photon
frequency) such that photo-excitation leads to 100%
product which is shown in Fig. 28a. In such a sce-
nario, the initially photo-excited molecule emits a pho-
ton inside the cavity as it reaches the local minima on
the product side (the minima originates from the |G, 1⟩
state which is the ground state with 1 photon in the cav-
ity) on the polaritonic potential energy surface. When
multiple molecules are present in the cavity, the pho-
ton emitted at the end of one molecule reacting (reach-
ing the local minima in the polariton potential energy
surface) can be reabsorbed by another molecule, which
then can undergo chemical reactivity. This is illustrated
in Fig. 28b where the polariton potential energy surface
for two molecules coupled to a cavity mode is shown.
The potential energy surface in Fig. 28b reveals that
the formation of the two product molecules follows a
downhill process, and this photochemical reactivity can
be triggered using just one photon. Thus, the quan-
tum yield, defined as the number of products created
per photon consumed, goes beyond unity. The same
has also been shown beyond two molecules in Ref. 212.
Thus, the photon here acts as a catalyst that is recycled
between successive molecules that undergo chemical re-
activity.

The mechanism described in Ref. 212 was confirmed
through direct quantum dynamics simulation.13 In ad-
dition to this, Ref. 13 showed that instead of molecules
directly emitting and absorbing a photon, molecular ex-
citation can be exchanged when cavity photon frequency
is off-resonant. In this case, the molecules can exchange
a virtual photon, which may be protected from cavity
loss and still lead to a quantum yield of more than 1.

Ref. 438 investigates how collectively coupling an en-
semble of Mg atoms to cavity radiation can modify
chemical reactivity in a molecule (MgH+) also coupled
to cavity radiation (as schematically shown in Fig. 28c).
Two relevant molecular electronic states and two atomic
electronic states are considered in this work. The work
assumes a Tavis-Cummings Hamiltonian and focuses on
the single excited subspace spanning either a molecu-
lar or an atomic excitation or 1 photon in the cavity.
The upper and lower polariton potential energy surfaces
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Figure 28: Modification of photochemical reactivity in the collective regime. (a) Polariton potential energy surface
of one molecule coupled to a cavity mode along a molecular reaction coordinate with polaritonic states color with by photonic
and excitonic character. (b) Polaritonic potential energy surface for two molecules coupled to one cavity mode. (c) Schematic
illustration of a single MgH+ molecule and an ensemble of Mg atoms coupled to a cavity mode. (d)-(g) Polaritonic potentials
along the dissociation coordinate of MgH+ with (d) 0, (e) 1, (f) 2, (g) 3 Mg atoms coupled to a cavity mode. (h) Polaritonic
potentials (middle panel) for N−1 identical molecules and one perturbed molecule (schematically illustrated in the left panel)
with the character schematically illustrated in the right panel. Panels (a)-(b) are reproduced from Ref. 212 with permission.
Copyright 2017 American Chemical Society. Panels (c)-(g) are reproduced from Ref. 438 with permissions. Copyright 2020
American Chemical Society. Panel (h) is reproduced from Ref. 195 with permission. Copyright 2021 American Chemical
Society.

formed for a single MgH+ molecule coupled to a cav-
ity mode along the dissociation coordinate q is shown
in Fig. 28d. When an atom is also coupled, a middle
polariton is formed, as shown in Fig. 28e (pink solid
line). In the resonant situation when the bare molecu-
lar, photonic, and atomic transitions are degenerate (at
some molecular nuclear configuration), the scenario re-
duces to what is shown in Fig. 24a such that the middle
polariton corresponds to a dark state (a superposition
of the molecular and atomic excitation). Note that this
middle polariton is not dark for any other nuclear con-

figurations. When more atoms are added, new degener-
ate dark states are formed, which are shown in Fig. 28f-g
(black solid line). Regardless of q, light-matter coupling,
or the additional number of atoms, these dark states re-
main decoupled from the rest of the polaritons and thus
have no effect on the reactivity of the molecule. When
only a single molecule is coupled due to the formation
of the light-matter avoided crossing (Fig. 28d between
blue and yellow curve) the dissociation is suppressed
and the molecule is photo-stabilized. This work finds
that this stability, however, cannot be further enhanced
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with a large number of atoms N ≳ 10 coupled to the
cavity. For a small number of atoms, N ≲ 10, the sta-
bility of the molecule may be enhanced. The authors
report constructive and destructive interference at the
avoided crossings which prevent molecular dissociation
and leads to molecular stability. It is worth mentioning,
as this analysis indicates, that collective cavity coupling
can only affect a molecular excited state potential en-
ergy surface to a limited extent.

Overall, one of the main conundrums of modifying
chemical reactivity in a cavity is that while the collec-
tive coupling of an ensemble of molecules to a radia-
tion mode and the resulting collective Rabi-splitting is
a global phenomenon (involving all molecules spatially
spread inside the cavity), a chemical reaction is a local
phenomenon in that only one molecule undergoes chem-
ical reactivity at a time which is largely dictated by the
potential energy surface of the single molecule. Thus,
whether or not the collective coupling to all molecules
also translates to a local modification of the potential
energy surface of a single molecule remains an open
question. Ref. 195 has attempted to shed light on this
issue.

Ref. 195 uses an ab-initio QEDFT (see details in
Sec. 3.2.4) approach to investigate a chain of nitrogen
dimers within a cavity. They find that collectively cou-
pling all nitrogen dimers (with the same nuclear con-
figuration) can modify the potential energy surface for
small perturbations along the dissociation coordinate of
one molecule in the vicinity of the uniform (such that
all molecules have identical nuclear configuration) con-
figuration. The effect of a small perturbation to one
molecular nuclear configuration on the collective cou-
pling is illustrated in Fig. 28h. For identical molecules
with uniform nuclear configurations, the collective cav-
ity coupling gives N − 1 dark states and 2 polaritonic
(upper and lower) bright states (as shown in Fig.1d and
Fig.24a). For one molecule perturbed, as schematically
shown in Fig. 28h (left panel), an additional polariton
state appears as molecular excitation on one molecule
(the perturbed one) is off-resonant to the molecular ex-
citations on the rest of the molecules or cavity photon
frequency. To understand this consider the rest of the
N −1 molecules collectively coupled to a cavity to form
upper polariton, lower polariton, and N − 2 degener-
ate dark states, which corresponds to the higher energy
levels in Fig. 28h. The perturbed molecular excitation
(lying energetically lower) then weakly couples to the
upper and lower polaritons. As a result, there are four
types of light-matter states, in ascending order of energy
they are, (a) an upper polariton composed of N−1 (un-
perturbed) molecular excitation, the cavity excitation
(1 photon in the cavity), and of a relatively tiny frac-
tion of the perturbed molecular excitation, (b) a set of
N−2 dark states composed of only N−1 (unperturbed)
molecular excitations, (c) a middle polariton with a sim-
ilar composition as the upper polariton except for a rela-
tively higher contribution (still tiny) from the perturbed
molecular excitation, and (d) the lower polariton pre-

dominantly composed of the perturbed molecular ex-
citation with a relatively low component of the other
molecular and cavity excitations. It is the modification
of the lower polariton that will lead to a modification
of local chemical reactivity. The authors report, for the
few molecules coupled to a cavity considered in their
study, this lower polariton can indeed be modified by
collective coupling to the rest of the molecules. How-
ever, the extent of the modification of this lower po-
lariton is also limited by the light-matter coupling of a
single molecule. Thus, when a single molecular coupling
to the cavity is vanishingly small, such modification of a
single molecular potential is unlikely regardless of how
strongly the rest of the molecules are coupled to the
cavity.

In conclusion, despite many interesting theoretical
proposals, modifying chemical reactivity through collec-
tive light-matter coupling remains a challenging task.
There are several ongoing efforts, both experimental
and theoretical, that are focused on clarifying what
photochemical reactions can be controlled through col-
lective light-matter coupling and, in such cases, what
mechanisms allow this to occur in spite of the mi-
nuscule coupling of individual molecules to the cav-
ity. Regardless, the experimental and theoretical works
up to this point have demonstrated the potential for
many molecule photochemical reactions to be controlled
through light-matter coupling and have set the stage for
future works to modify photochemistry in the collective
coupling regime.

6.4 Collective Effects in VSC-Modified
Reactivities

The VSC experiments4,29,33,108,109 happen intrinsically
in the collective coupling regime, where there are a large
number of molecules (often > 1010) coupled to the cav-
ity modes and the light-matter coupling strength for
each molecule is relatively small. Unfortunately, most
theoretical works are restricted to the one molecule
limit, which requires a nonphysical light-matter cou-
pling strength or an extremely small cavity size.14,69

However, dealing with a model system with many
molecules coupled to a cavity is challenging for both di-
rect MD simulations and theoretical derivations. There
have been quite a few attempts on explaining the mys-
terious collective effects, but more theoretical work is
needed to provide a satisfactory answer.

The VSC Rabi frequency in Eq. 194 is only valid for
the single-molecule case. The result can be generalized
for N identical molecules {RJ} coupling to q̂c. The
light-matter Hamiltonian for N molecules coupled to one
cavity photon mode (in the single excited subspace) is
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given by,

ĤPF =
∑
J

T̂RJ
+ EG({RJ})|ψG⟩⟨ψG| (218)

+
∑
k,J

p̂2k,J
2

+
1

2
ω2
c

(
x̂k,J +

ck ·RJ

ω2
k

)2

+
p̂2c
2

+
1

2
ω2
c

(
q̂c +

√
2

ℏωc
A0 · µG({RJ})|ψG⟩⟨ψG|

)2

,

where |ψG⟩⟨ψG| ground state of the matter with
EG({RJ}) as the ground state potential energy surface
and µG({RJ}) is the ground state permanent dipole.
For non-interacting molecules, we have EG({RJ}) ≈∑

J
1
2ω

2
0(RJ − R0) and µG({RJ}) ≈ Nµ0 +

∑
J µ0RJ .

Note the term Nµ0 can be removed by the translation

q̂c → q̂c +
√

2
ℏωc

A0 · Nµ0 using a displacement oper-

ator for qc. With this simplification, the expression of
the collective Rabi-splitting for the many-molecule case
can be obtained by defining a collective molecular coor-
dinate RB = 1√

N

∑
J RJ which couples to the q̂c with

a collective coupling scaled by
√
N . At the resonant

condition of ωc = ω0, the Rabi splitting ℏΩR in the
collective coupling regime can be expressed as69,365,381

ℏΩR = 2

√
ℏ

2Mω0
ωcA0 · µ′

0 = 2ℏ
√

N

2ϵ0VM
(ê · µ′

0)

≡ 2ℏωc · η, (219)

where N is the total number of molecules coupled to
the cavity mode, and the collective normalized cou-
pling strength η characterizes the light-matter coupling
strength. Setting N = 1 will go back to the single-
molecule case. Note that the above relation between
ΩR and η only holds under the linear approximation of
the dipole operator, and it breaks down for ultra-strong
coupling (USC) regime and beyond when η > 0.1.38

While the scaling of the Rabi-splitting with the num-
ber of molecules N is well understood theoretically and
verified experimentally, it is not clear how VSC modifi-
cation of chemical reactivity could depend on N . Cur-
rently, there is no cohesive theory that fully explains
the range of phenomena experimentally observed for
VSC reactions in the collective regime. However, many
groups have made important and notable advances to
this field that hopefully further elucidate the problem
at hand and inspire future advances in the field. With
that in mind, the rest of this section discusses many
of these creative theoretical advances in VSC, review-
ing the methods, results, and drawbacks of each one of
these theories.

Campos-Gonzalez-Angulo and Yuen-Zhou382 per-
formed a normal mode analysis of a model system where
molecules were isotropically distributed and coupled to
the same cavity mode. The Hamiltonian of the model

system is shown in Eq. 220 as

ĤPF =
P̂2

2M
+
p̂2c
2

+

N∑
J=1

Eg(RJ) +
ω2
cq

2
c

2
(220)

+

√
2ω3

c

ℏ
A0qc

N∑
J=1

µ(RJ), (221)

whereM is the mass of the molecule, N is the total num-
ber of molecules, Eg(RJ) is the ground-state potential
energy surface of the J-th molecule, A0 characterizes
the strength of the light-matter coupling strength, ϵ is
the polarization vector of the cavity field, and µ(RJ)
is the dipole moment of the J-th molecule. When one
molecule is in the transition state, the Hamiltonian can
be rewritten in an effective 3-mode expression Ĥ(x),
where x = {R‡, RB, qc} represents the coordinates of
the reactive molecule, the collective bright mode, and
the photon mode. To compute the normal mode fre-
quencies, the 3-mode Hessian matrix is written as,

Hx ≡ ∂2HPF

∂xi∂xj
=

 ω2
0 0

√
N − 1C0

0 ω2
‡ C√

N − 1C0 C ω2
c

 ,
(222)

where ω0 is the reactant frequency, ω‡ is the barrier fre-
quency, µ′

0 is the slope of the permanent dipole at the
reactant well, µ′

‡ is the slope of the permanent dipole at
the transition state, ⟨...⟩ denotes the ensemble average,

and C0 = A0

√
2ω3

c

ℏ ⟨µ′2
0 ⟩N−1 represents the coupling be-

tween the cavity mode and the collective bright mode.

Here, we have introduced C =
√

2ω3
c

ℏ A0µ
′
‡ which charac-

terizes the light-matter coupling strength. Clearly, the
coupling strength between the reactive molecule and the
cavity mode is limited by C (single-molecule coupling
strength). As a result, the reaction rate will not de-
pend on the number of molecules. The same conclusion
is drawn when using the Pollak-Grabert-Hänggi theory
that extends the MTST to the energy diffusion-limited
regime.439 Then the normal mode frequencies are used
to compute κN , which is the ratio between the rate con-
stant of N molecules inside the cavity and the TST rate
of one molecule outside the cavity,

κN ≈ exp

[
(ω0C)2

(ω2
0ω

2
c −NC2

0)kBT

]
. (223)

As the denominator scales with respect to the number of
molecules N , when N is large, κN → 1. In other words,
when N is large (N = 109 in the original work), the
reaction rate has no obvious dependence on the coupling
strength or the scale of the dipole moment. Note that
the single-molecule limit of such theory is equivalent to
what was presented in Ref. 69 when considering the
dipole self-energy term.

Galego and co-workers381 performed classical molec-
ular dynamics simulations to explore a system of many
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molecules distributed around a sphere nanoparticle,
where the permanent dipoles of molecules are aligned
along the direction of the field of the sphere’s z-oriented
dipole mode. The simulation results show that both the
dipole-sphere interaction (between the molecules and
the nanosphere) and the dipole-dipole interaction (be-
tween the molecules) have positive contributions to the
potential energy barrier of the whole system, so that
the barrier increases almost linearly with respect to the
number of molecules coupled to the sphere. Conse-
quently, the TST rate will decrease exponentially due
to the monotonic increase of the reaction barrier. Even
though the authors find rate suppression in the perfectly
aligned case, the frequency dependence (resonant effect)
is obviously missing.

Nitzan and co-workers440 used classical molecular dy-
namics to simulate a model system with many CO2

molecules coupled to a cavity mode shown in Fig. 29a.
The strong coupling is formed between the cavity
mode and the C-O bond stretching mode in the CO2

molecules. A fraction of the molecules are “hot”, which
are thermally activated and have higher kinetic en-
ergy. The rest CO2 molecules are at room tempera-
ture, which are called “thermal” molecules and act like
a thermal bath to dissipate excess energies from the
“hot” molecules. Fig. 29b shows that inside the cavity
the fitted vibrational relaxation rates are much larger
than the rates outside the cavity. This shows that po-
laritons can facilitate the intermolecular vibrational en-
ergy transfer between the hot CO2 molecules and the
thermal bath. This effect is especially strong at the res-
onant condition where the cavity frequency is close to
the C-O bond stretching frequency. Fig. 29c shows that
while the total number of molecules (Nsub) is fixed, in-
creasing the number of “hot” molecules results in faster
energy dissipation both inside and outside the cavity.
However, the increase of decay rate is faster inside the
cavity, so the difference between the two rates increases
as well, so this cavity-enhanced energy transfer depends
on the Rabi splitting and scales with the number of hot
molecules. Although polaritons are always transiently
excited and able to mediate the energy transfer, the
modification on the average relaxation rates becomes
negligible when the total number of CO2 molecules ex-
ceeds a certain number (Nsub > 104 as reported in the
work).

In Ref. 94, the authors developed a model system,
shown in Fig. 29d, where a reactive molecule couples
to many solvent molecules and these solvent molecules
then couple to the cavity mode. The model Hamiltonian
is written as

Ĥg
PF =

P̂2

2
+EG(R)+

p̂2c
2

+
1

2
ω2
c

(
q̂c+

√
2

ℏωc
A0·µG(R)

)2

,

(224)
where Eg(R) is modeled as

Eg(R) = UM (RM ) +

N∑
i=1

1

2
ω2
J

(
RJ +

cJ
ω2
J

RM

)2
. (225)
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Figure 29: Cavity modification of ground state kinet-
ics in the collective coupling regime. (a) A schematic
illustration showing some “hot” CO2 molecules (with higher
thermal energy) surrounded by a thermal bath of other
CO2 molecules which are at room temperature. All these
molecules collectively couple to a cavity mode. (b) Fitted
vibrational energy relaxation rates as a function of the cav-
ity mode frequency. The enhancement of energy dissipa-
tion is in resonance with the cavity frequency. (c) While
the number of CO2 molecules in the thermal bath (Nsub)
is fixed, increasing the number of hot molecules (Nhot) en-
hances thermal dissipation both inside and outside the cav-
ity. However, the enhancement inside the cavity increases
faster with respect to Nhot. (d) A rendering shows a model
system where a reactive molecule is coupled to some solvent
molecules that are coupled to the cavity mode. (e) Fixing
the total number of solvent molecules (N = 2,500), increas-
ing per-molecule light-matter coupling will further suppress
the reaction rate. Note that the suppression is in resonance
with the cavity frequency. (f) Reaction rate as a function of
the total number of solvent molecules (N) at different fixed
per-molecule light-matter coupling strengths (shown as the
numbers). The reaction rate decreases monotonically in all
cases. Panels (a)-(c) are adapted with permission from Ref.
440. Copyright 2021 Wiley-VCH. Panels (d)-(f) are repro-
duced with permission from Ref. 94. Copyright 2022 Amer-
ican Institute of Physics.

The solute molecule is modeled as a double-well po-
tential UM (RM ) = aR4

M − bR2
M . At the top of the

barrier RM = R‡
M , UM (RM ) ≈ − 1

2ω
2
‡ (RM − R‡

M )2.
Further, the total dipole of the system is µG(R) =∑N

J=1 µJ(RJ) ≈
∑

J µ
′
JRJ (where µ′

J = dµG(R)/dRJ),
and we assume that µM (RM ) = 0. Here, cJ is the
reactant-solvent coupling constant and ωJ is the solvent

84



frequency. For simplicity, we assume that the solvent
molecules are identical, such that cJ = cs, ωJ = ωs and
µ′
J = µ′

s. Note that these solvent molecules are aligned
anisotropically around the reactive molecule. Similar
to the previous work in the single-molecule limit,69 the
GH theory can be applied to this system to study the
reaction rate suppression due to the cavity mode. How-
ever, the suppression will also depend on the solvent
frequency ωs and the total number of solvent molecules
N . At the dividing surface RM = R‡

M , the Hessian
matrix in the 3-mode x subspace is shown in Eq. 226,

Hx ≡ ∂2HPF

∂xi∂xj
=

−ω2
‡ +N

c2s
ω2

s

√
Ncs 0

√
Ncs ω2

s +N C2

ω2
c

√
NC

0
√
NC ω2

c

 ,
(226)

where x = {R‡
M , RB, qc} represents the coordinates of

the reactive molecule, the collective bright mode, and
the photon mode. ω‡ is the barrier frequency of the re-

active molecule and C =
√

2ω3
c

ℏ A0µ
′
s. Note the interest-

ing structural difference between Eq. 226 and Eq. 222.
In Eq. 226, while both the off-diagonal coupling terms
scale by

√
N , in Eq. 222 only one off-diagonal term

scales by ∼
√
N . The presence of this additional

√
N

in Eq. 226, which appears due to inter-molecular in-
teractions (solvent-solute interactions) is the origin of
the collective “resonant” suppression shown in Fig. 29e.
This also indicates that such inter-molecular interac-
tions might be one of the missing pieces for solving the
mystery of VSC in the collective coupling regime.

The normal mode frequencies can be obtained by solv-
ing Eq. 226 and the transmission coefficient κ can be
computed by plugging these normal mode frequencies
into Eq. 201. Fig. 29e shows the trend of κ/κ0, where κ
is the transmission coefficient inside the cavity and κ0 is
the transmission coefficient outside the cavity, concern-
ing different light-matter coupling strengths. When the
total number of solvent molecules is fixed (N = 2500),
the reaction rate is suppressed at all tested coupling
strengths, and there is a clear resonant structure for
the cavity frequency. However, the minima in all cases
have a much smaller red-shift from ω‡ compared to
the results from Ref. 69. Fig. 29f shows the cavity-
modified reaction rate with respect to the number of
solvent molecules, while the cavity frequency is fixed at
ωc = 200 cm−1. At a certain per-molecule light-matter
coupling strength, increasing the number of molecules
will further suppress the reaction rate, similar to the
observations in the single-molecule case.69 Additionally,
the authors also explored the effects of cavity loss and
found that cavity loss can further enhance the dissi-
pation capability of the cavity mode, which will lead
to more suppression of the reaction rate.94 Note that
the setup of this model system is not directly related
to the experimental setups shown in Fig. 19a. Here,
N denotes the number of solvent DOF (which are also
collectively coupled to the cavity) directly coupling to

the reactive molecule, while the experiments in Fig. 19a
suggest the reactivity depends on the number of reac-
tive molecules (or their concentration in Fig. 20b) col-
lectively coupled to the cavity. Nevertheless, there are
VSC experiments that directly couple cavity mode to
the solvent DOF, whereas the solvents are then cou-
pled to a solute molecule that undergoes reactions. In
Fig. 19c, the rate constant is enhanced when the cav-
ity mode is collectively coupled to the solvents, which
are also coupled to the reactive molecules. In a very
recent experiment of VSC modified Urethane Addition
Reaction,367 it was also found that when collectively
coupling the solvent DOF with the cavity mode (where
the solvent also interacts with the reactive molecule),
the rate constant is suppressed, which is in favor to the
theoretical results proposed here. We should emphasize
that by no means does this theoretical work provides
the ultimate answer to the mysteries of the VSC modi-
fication of the reactivities. We envision that this theo-
retical work brings us one step closer to finally resolving
the mysteries of VSC enabled chemistry demonstrated
in recent experiments4,33,108,110,112,366 by demonstrat-
ing both the collective coupling effect and the cavity
frequency dependent modification of the rate constant.

Finally, Ref. 36 investigated the VSC effect using a
model that couples radiation modes to the vibrational
degrees of freedom in non-adiabatic electron transfer
reaction. The authors in that work considered an
ensemble of molecules placed inside an optical cavity
(schematically shown in Fig. 30a) with quantized radi-
ation described by a single cavity mode. Each molecule
has a reactant (donor) |RJ⟩ and a product |PJ⟩ elec-
tronic state (with J as the index for the molecule)
and they are coupled to a high-frequency molecular
vibration such that the electron transfer rate (reac-
tant to product) constant is computed using the MLJ
theory. The cavity excitation is assumed to be cou-
pled to the vibrational excitation but only on the
product such that the light-matter coupling term read
g
∑

J â
†
câi|PJ⟩⟨PJ | + h.c. where gc is the light-matter

coupling strength. In other words, a product state with
no vibrational excitation and one photon in the cavity
â†c|PJ⟩⊗|0̄⟩ (where â†c is the cavity photon creation oper-
ator) is coupled to the product state with a vibrational

excitation and no photons in the cavity â†J |PJ⟩ ⊗ |0̄⟩
where |0̄⟩ represents the vacuum state of the cavity and
the molecular vibrations. For N identical molecular vi-
brations, only one collective bright vibration, represent-
ing delocalized vibrational excitation over all molecules,
can be shown to hybridize strongly to the cavity excita-
tion, such that the light-matter coupling can be written
as

√
Ngâ†câB +h.c. where â†B = 1√

N

∑
J â

†
J |PJ⟩⟨PJ |. At

the same time, N−1 dark vibrational excitations remain
uncoupled from the cavity photon mode. The resulting
hybrid vibro-polaritonic states are schematically illus-
trated in Fig. 30b.

Fig. 30b presents the vibro-polariton energies along a
reaction coordinate qs. Here the driving force between
the reactant state (blue solid line) |RJ⟩ and the product
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others. We have found a range of molecular parameters where the
shrinkage of the activation energy of the lower polariton channel
can outcompete the rate associated with the massive number of
dark-state channels. We determined that these effects are most
prominent under resonant conditions. This finding is relevant, as
such is the behavior observed in experimental reactions performed
under VSC. We must remark, however, that the latter are pre-
sumably vibrationally adiabatic reactions and the involvement of
the present mechanism is not obvious (for a recent study on
possibly important off-resonant Casimir–Polder effects, we
refer the reader to ref. 50). Although a thorough understanding of
the reaction pathways involved in these observations is beyond the
scope of this article, we believe that the tug-of-war between the
activation energy reduction from few polariton channels against
the numerical advantage of the dark states could be a ubiquitous
mechanism of TA polariton chemistry under VSC, independently
of whether it occurs with reactants or products. Even though there
might be other subtle physical mechanisms underlying VSC TA
reactions, we conclude with three important observations
regarding the presently proposed catalytic mechanism. First, it

does not offer a reduction of reaction rate coefficients for a broad
range of parameters; after all, if the polariton channels do not
provide incentives for their utilization, the dark states will still be
accessible, leading to virtually unaffected reaction rates as com-
pared with the bare case. However, an experimental suppression of
reactions by VSC under TA conditions (as in refs. 12,13) could
correspond, microscopically, to the polaritonic modification of
elementary step rates in the network of reaction pathways that
comprises the mechanism. Second, it is not evident whether the
conclusions associated with this mechanism are relevant in pho-
tochemical processes where non-equilibrium initialization of
polariton populations is allowed. Finally, it is important to
emphasize that this VSC mechanism is not guaranteed to yield
changes in TA reactivity, given that particular geometric mole-
cular conditions need to be fulfilled. Regardless, it is remarkable
that TA reactions under VSC can be modified at all given the
entropic limitations imposed by the dark states. It is of much
interest to the chemistry community to unravel the broader class
of reactions and the VSC conditions for which this mechanism is
operative; this will be part of our future work.
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others. We have found a range of molecular parameters where the
shrinkage of the activation energy of the lower polariton channel
can outcompete the rate associated with the massive number of
dark-state channels. We determined that these effects are most
prominent under resonant conditions. This finding is relevant, as
such is the behavior observed in experimental reactions performed
under VSC. We must remark, however, that the latter are pre-
sumably vibrationally adiabatic reactions and the involvement of
the present mechanism is not obvious (for a recent study on
possibly important off-resonant Casimir–Polder effects, we
refer the reader to ref. 50). Although a thorough understanding of
the reaction pathways involved in these observations is beyond the
scope of this article, we believe that the tug-of-war between the
activation energy reduction from few polariton channels against
the numerical advantage of the dark states could be a ubiquitous
mechanism of TA polariton chemistry under VSC, independently
of whether it occurs with reactants or products. Even though there
might be other subtle physical mechanisms underlying VSC TA
reactions, we conclude with three important observations
regarding the presently proposed catalytic mechanism. First, it

does not offer a reduction of reaction rate coefficients for a broad
range of parameters; after all, if the polariton channels do not
provide incentives for their utilization, the dark states will still be
accessible, leading to virtually unaffected reaction rates as com-
pared with the bare case. However, an experimental suppression of
reactions by VSC under TA conditions (as in refs. 12,13) could
correspond, microscopically, to the polaritonic modification of
elementary step rates in the network of reaction pathways that
comprises the mechanism. Second, it is not evident whether the
conclusions associated with this mechanism are relevant in pho-
tochemical processes where non-equilibrium initialization of
polariton populations is allowed. Finally, it is important to
emphasize that this VSC mechanism is not guaranteed to yield
changes in TA reactivity, given that particular geometric mole-
cular conditions need to be fulfilled. Regardless, it is remarkable
that TA reactions under VSC can be modified at all given the
entropic limitations imposed by the dark states. It is of much
interest to the chemistry community to unravel the broader class
of reactions and the VSC conditions for which this mechanism is
operative; this will be part of our future work.
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upper and lower polaritons (UP and LP), and dark (D) modes,
respectively. It is noteworthy that the operators âðkÞDðNÞ are defined

only for N # 2 and the coefficients cki fulfill
PN

i¼1cki ¼ 0 and
PN

i¼1c
%
k0icki ¼ δk0k. In Eq. (3), θN ¼ 1

2 arctan
2g

ffiffiffi
N

p

Δ is the mixing
angle, where Δ ¼ ω0 & ωP is the light–matter detuning and
âBðNÞ ¼ 1ffiffiffi

N
p
PN

i¼1âi corresponds to the so-called bright (super-
radiant) mode. These modes have associated frequencies

ω ± ðNÞ ¼
ω0 þ ωP

2
±
ΩN

2
;

ωD ¼ ωP;
ð4Þ

where ΩN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4g2N þ Δ2

p
is the effective Rabi splitting;

equivalent definitions can be made for the creation operators.
It is worth noting that there is no free lunch: the superradiantly
enhanced VSC with the bright mode occurs at the expense of the
creation of a macroscopic number of dark modes that—under
the context of this model—do not mix with light (inhomoge-
neous broadening results in small but experimentally observable
light-like character for these modes29–32). This effect is negligible
for the phenomena considered in this work given that the density
of molecular excitations is much larger than that of the photon
modes.)

Inside of the cavity, the reaction R&!P becomes

R þ UPN&1 þ LPN&1 þ
XN&1

k¼2

DðkÞ
N&1&!UPN þ LPN þ

XN

k¼2

DðkÞ
N ;

ð5Þ

where the subscripts indicate the number of molecules that
participate in VSC (from Eq. (3), it can be seen that UP0

corresponds to the uncoupled photon mode, and LP0 and DðkÞ
0 are

non-existent). This reaction implies that each time a molecule
transforms into the product, it becomes part of the ensemble that
couples to light (see Supplementary Note 2 for additional insight).
Electron transfer occurs as a result of a vibronic transition
between diabatic states; this feature makes it similar to Raman
scattering. A study of the latter under VSC33 took advantage of

the massive degeneracy of the dark modes to introduce a
judicious basis34,

âðkÞD ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðk& 1Þ

p
Xk&1

i¼1

âi & ðk& 1Þâk

 !

; ð6Þ

that enables calculations for an arbitrary number of molecules
and will prove to be convenient for our purposes. Notice that the
mode âðkÞD is highly localized at âk but has a long tail for â1(i(k&1
(for a visualization, see Supplementary Fig. 1); furthermore, it is
fully characterized by the index k and thus does not depend
explicitly on N . In terms of these dark modes, the reaction in Eq.
(5) can be drastically simplified from an N þ 1 to a three-body
process,

R þ UPN&1 þ LPN&1 &!UPN þ LPN þ DðNÞ
N ; ð7Þ

where, without loss of generality, we have considered that the
N-th molecule is the one that undergoes the reaction (notice that,
in accordance with the notation introduced in Eq. (6), the mode
DðNÞ

N is highly localized in PN for sufficiently large N).
Furthermore, we can identify the photon (â0), the N-th molecule
(âN ), and the bright state that excludes it (âBðN&1Þ) as the normal
modes embodying the natural degrees of freedom of the problem,
since the modes in reactants and products can be written as
Duschinsky transformations35 of these. Explicitly, for the
reactants we have

âþðN&1Þ

â&ðN&1Þ

 !

¼
cos θN&1 &sin θN&1

sin θN&1 cos θN&1

" # â0
âBðN&1Þ

 !

; ð8Þ

â0N ¼ D̂y
N Ŝ

y
NâN ŜND̂N ; ð9Þ

where â0N acts on the vibrational degrees of freedom of the N-th
reactant (see Supplementary Note 1 for a derivation), whereas for
the products

âþðNÞ

â&ðNÞ

âðNÞ
D

0

B@

1

CA ¼
cos θN &sin θN 0

sin θN cos θN 0

0 0 1

0

B@

1

CA

1 0 0

0
ffiffiffiffiffiffiffi
N&1
N

q ffiffiffi
1
N

q

0
ffiffiffi
1
N

q
&

ffiffiffiffiffiffiffi
N&1
N

q

0

BBB@

1

CCCA

â0
âBðN&1Þ

âN

0

B@

1

CA: ð10Þ

With the above considerations, the VSC analog of the MLJ rate
coefficient in Eq. (1) is given by a sum over possible quanta
fvþ; v&; vDg in the product modes UPN , LPN , and DðNÞ

N ,
respectively:

kVSCR!P ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
π

λSkBT

r
JRPj j2

_

X1

vþ¼0

X1

v&¼0

X1

vD¼0

Wvþ;v&;vD
; ð11Þ

where Wvþ;v&;vD
¼ Fvþ;v&;vD

$$$
$$$
2
exp & Ez

vþ ;v& ;vD
kBT

" #
, and

Fvþ;v&;vD

$$$
$$$
2
¼ 0þðN&1Þ0&ðN&1Þ0Rjvþv&vD
D E$$$

$$$
2

¼ sin2θN
N

" #vþ cos2θN
N

" #v& N & 1
N

" #vD

´
vþ þ v& þ vD
vþ; v&; vD

" #
00jvþ þ v& þ vD
% &$$ $$2;

ð12Þ

is a Franck–Condon factor between the global ground state in the
reactants and the excited vibrational configuration in the
product33. Here, 00j i is the vibrational ground state of the N-th
molecule in the reactant electronic state and vþ þ v& þ vD

$$ &
is

the vibrational state of the N-th molecule with vþ þ v& þ vD in
the product electronic state. The calculation in Eq. (12) (see
Supplementary Note 3 for a derivation) is reminiscent to the
contemporary problem of boson sampling36. Using the notation

Fig. 1 Depiction of a microcavity. A large number of molecules can undergo
a chemical reaction (e.g., electron-transfer-induced conformational
transformation24) and support a high-frequency vibrational mode that can
strongly couple to a confined optical mode; these molecules are in a
solvated environment (blue/purple moieties). The reaction of concern is
mediated by that intramolecular mode and a collection of low-frequency
modes of the solvation sphere. The optical mode is typically confined by
two dielectric mirrors (blue structures) separated by a spacer that is
saturated with the reaction mixture
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absence of the latter, it becomes irrelevant for the cumulative
kinetics, as we shall see next.

Up until now, we have shown that the rate coefficient depends
on the number of molecules that take part in the VSC, which
changes as the reaction progresses. To illustrate the cumulative
effect on the kinetics, we numerically integrate the rate law

d NRh i
dt

¼ " kVSCR!PðNRÞNR

! "
ð18Þ

where %h i indicates an average over the ensemble of reactive
trajectories (see Supplementary Note 4). We show the behavior of
NRðtÞ ¼ M " NðtÞ for several detunings in Fig. 5. In writing
Eq. (18), we have assumed that every electron transfer event is
accompanied by a much faster thermalization of the products
(largely into the global ground state in the products side) that
allows us to ignore back-reactions. This assumption is well
justified if we consider that, for systems with parameters close to
our model molecule, the vibrational absorption linewidth is of the
order of 0:01_ωP

12,19,40, which represents a timescale suitably

shorter than the reaction times estimated from the rate constant,
kR!P ¼ 9:4 ´ 10"6ωP, calculated with the same parameters. In
Fig. 5, we can see that, for Δ & 0, at early times the reactions
proceed in the same way as in the bare case. However, after some
molecules have been gathered in the product, the coupling is strong
enough for the LP channel to open and dominate over the D ones.
This effect is cumulative and the reaction endures a steady catalytic
boost. Importantly, the maximum enhancement is observed for
resonant conditions where the light–matter coupling is the most
intense. On the other hand, with a slightly negative detuning,
Δ ¼ "0:02ωP, the reaction is intensified in the early stages (as
explained above) but is taken over by the dark states after a relatively
short amount of time. Although this off-resonant effect might look
appealing, it occurs at an early stage of the reaction when VSC is not
technically operative, namely when the energetic separation between
dark and polaritonic modes might be blurred by dissipative
processes. These considerations are beyond the scope of the current
article and will be systematically explored in future work. In
conclusion, even though some off-resonant effects might be present
at the rate coefficient level, the condition of resonance is essential to
observe a significant cumulative acceleration of the reaction (i.e.,
change in reactant lifetime) with respect to the bare case.

Importantly, in the case where the high-frequency mode of the
reactant molecules also couples to light, the system is under VSC
before the reaction begins and the spectrum in the first excited
manifold in the products remains invariant throughout the
reaction. Therefore, the rate coefficient is a true rate constant
evaluated at N ¼ M, i.e., at the maximum coupling. We will
present a detailed analysis of this problem elsewhere.

Discussion
We have shown that VSC can result in catalysis of TA reactions.
We have presented an MLJ model to study charge transfer pro-
cesses under VSC (in passing, these results suggest a VSC alter-
native to enhance charge conduction, which has so far been only
considered in the electronic strong coupling regime37,46–49). In
this model, there is a range of molecular features where the
shrinkage of the activation energy of the lower polariton channel
can outcompete the rate associated with the massive number of
dark-state channels. This model describes a mechanism suitable to
be present in a wide variety of thermally activated non-adiabatic
reactions, e.g., electron, proton, and methyl transfer, among
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Fig. 3 Potential energy surfaces under VSC along the slow coordinate. (Not
to scale.) With respect to the reactant (blue), the vibrational ground state
of the product (orange) is in the Marcus inverted regime; the manifold of
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others. We have found a range of molecular parameters where the
shrinkage of the activation energy of the lower polariton channel
can outcompete the rate associated with the massive number of
dark-state channels. We determined that these effects are most
prominent under resonant conditions. This finding is relevant, as
such is the behavior observed in experimental reactions performed
under VSC. We must remark, however, that the latter are pre-
sumably vibrationally adiabatic reactions and the involvement of
the present mechanism is not obvious (for a recent study on
possibly important off-resonant Casimir–Polder effects, we
refer the reader to ref. 50). Although a thorough understanding of
the reaction pathways involved in these observations is beyond the
scope of this article, we believe that the tug-of-war between the
activation energy reduction from few polariton channels against
the numerical advantage of the dark states could be a ubiquitous
mechanism of TA polariton chemistry under VSC, independently
of whether it occurs with reactants or products. Even though there
might be other subtle physical mechanisms underlying VSC TA
reactions, we conclude with three important observations
regarding the presently proposed catalytic mechanism. First, it

does not offer a reduction of reaction rate coefficients for a broad
range of parameters; after all, if the polariton channels do not
provide incentives for their utilization, the dark states will still be
accessible, leading to virtually unaffected reaction rates as com-
pared with the bare case. However, an experimental suppression of
reactions by VSC under TA conditions (as in refs. 12,13) could
correspond, microscopically, to the polaritonic modification of
elementary step rates in the network of reaction pathways that
comprises the mechanism. Second, it is not evident whether the
conclusions associated with this mechanism are relevant in pho-
tochemical processes where non-equilibrium initialization of
polariton populations is allowed. Finally, it is important to
emphasize that this VSC mechanism is not guaranteed to yield
changes in TA reactivity, given that particular geometric mole-
cular conditions need to be fulfilled. Regardless, it is remarkable
that TA reactions under VSC can be modified at all given the
entropic limitations imposed by the dark states. It is of much
interest to the chemistry community to unravel the broader class
of reactions and the VSC conditions for which this mechanism is
operative; this will be part of our future work.
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can outcompete the rate associated with the massive number of
dark-state channels. We determined that these effects are most
prominent under resonant conditions. This finding is relevant, as
such is the behavior observed in experimental reactions performed
under VSC. We must remark, however, that the latter are pre-
sumably vibrationally adiabatic reactions and the involvement of
the present mechanism is not obvious (for a recent study on
possibly important off-resonant Casimir–Polder effects, we
refer the reader to ref. 50). Although a thorough understanding of
the reaction pathways involved in these observations is beyond the
scope of this article, we believe that the tug-of-war between the
activation energy reduction from few polariton channels against
the numerical advantage of the dark states could be a ubiquitous
mechanism of TA polariton chemistry under VSC, independently
of whether it occurs with reactants or products. Even though there
might be other subtle physical mechanisms underlying VSC TA
reactions, we conclude with three important observations
regarding the presently proposed catalytic mechanism. First, it

does not offer a reduction of reaction rate coefficients for a broad
range of parameters; after all, if the polariton channels do not
provide incentives for their utilization, the dark states will still be
accessible, leading to virtually unaffected reaction rates as com-
pared with the bare case. However, an experimental suppression of
reactions by VSC under TA conditions (as in refs. 12,13) could
correspond, microscopically, to the polaritonic modification of
elementary step rates in the network of reaction pathways that
comprises the mechanism. Second, it is not evident whether the
conclusions associated with this mechanism are relevant in pho-
tochemical processes where non-equilibrium initialization of
polariton populations is allowed. Finally, it is important to
emphasize that this VSC mechanism is not guaranteed to yield
changes in TA reactivity, given that particular geometric mole-
cular conditions need to be fulfilled. Regardless, it is remarkable
that TA reactions under VSC can be modified at all given the
entropic limitations imposed by the dark states. It is of much
interest to the chemistry community to unravel the broader class
of reactions and the VSC conditions for which this mechanism is
operative; this will be part of our future work.
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Figure 30: Cavity modification of nonadiabatic elec-
tron transfer reaction through vibrational strong
coupling. (a) Schematic illustration of an ensemble of
molecules placed inside an optical cavity. (b) Vibro-
polariton potential energy surfaces of the molecule-cavity
hybrid system. (c) Chemical rate constant as a function of
cavity detuning ∆ and total light-matter coupling strength√
Ng. Reproduced from Ref. 36 under the CC BY license.

state (orange solid line) |PJ⟩ is in the Marcus inverted
regime. Due to the light-matter coupling between âB
and âc two light-matter hybrid states, lower and up-
per polariton states, are formed which are indicated as
red and violet solid lines. The relative driving force be-
tween the reactant state and the lower polariton thus
depends on the light-matter coupling

√
Ng where N is

the number of products. Thus the chemical rate in-
creases as more products are formed. Meanwhile, the
relative driving force between the reactant state and
(N−1) excited vibrational dark states (green solid line)
remains the same as the uncoupled case. The chemical
rate modification as a function of the light-matter cou-
pling

√
Ng and the detuning ∆ = ωc − ωp, where ωp

is the frequency of the vibrational mode on the prod-
uct state, is shown in Fig. 30c. The bell-shaped rate
curves are because as the Rabi splitting increases, the
activation energy of the lower polariton decreases, thus
making this channel dominant.36 The authors find a pa-
rameter range where, despite the vastly greater number
of dark-state channels (N−1) than polaritonic ones, the
latter controls the reaction’s kinetics due to their lower

activation energies.36

Using a similar model system, Ref. 436 showed that
such non-adiabatic ground state electron transfer reac-
tions can also be suppressed in addition to being en-
hanced as shown in Ref. 36. The authors in Ref. 436
point out the two main factors in modifying such reac-
tions: (i) through the modification of the driving forces
due to the shifts of the energy levels induced by the
light-matter coupling and (ii) through the modification
of the Franck-Condon factors that rescale the diabatic
coupling. They find that when the cavity coupling for
the reactant and product states differ significantly from
each other (as was the case in Ref. 36) the cavity cou-
pling leads to an increase in chemical rate. On the other
hand, when cavity coupling for the reactant and product
states are similar in magnitude the modification of the
Franck-Condon factors leads to suppression of chemical
kinetics, especially at ultra-strong vibrational coupling
regime.

Meanwhile, Ref. 127 points out that a realistic cav-
ity contains a distribution of cavity modes and not just
kx = 0 mode (see Fig. 4). When considering the full
polariton dispersion the authors find a negligible effect
in the VSC regime for nonadiabatic electron transfer
rate for the type of model system studied in Ref. 36.
Specifically, while Ref. 36 implicitly assumes that the
density of states consists of three delta functions which
are at the lower and upper polariton and the dark states,
Ref. 127 generalizes their approach to a continuous den-
sity of states of polaritons and dark states. By doing
so they find that the overall chemical reaction rate is
proportional to an energy integral rather than a sum
over three discrete contributions. The net cavity mod-
ification of chemical rate under such circumstances is
negligible. This work also illustrates the importance of
studying cavity-mediated chemical reactions beyond a
single cavity mode.

Overall, despite many theoretical efforts, a clear theo-
retical explanation of the experimentally observed mod-
ifications of ground-state chemical reactivity is unavail-
able. However, these studies will undoubtedly inspire
future research that may one day solve the mysteries of
cavity-modified ground-state chemical reactivity.

7 Conclusions and Future Directions

As the experimental demonstrations of molecular cavity
QED in the strong and ultrastrong coupling regimes be-
come more frequent and accessible to the broader com-
munity, there is a need for the development of new theo-
retical tools that can accurately and efficiently describe
such complex light-matter interactions found in experi-
ments. This review summarizes some of these exciting
theoretical advances in polariton chemistry, showcasing
methods ranging from improvements in the fundamen-
tal framework and description of these hybrid systems to
the computational challenges, techniques, and applica-
tions spanning from modifying reactivity in the ground
state to understanding spectral signatures of excited
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state photochemistry.
In Sec. 2, we discussed the rigorous theoretical back-

ground of molecular cavity QED. We first reviewed the
basic theory of the molecular Hamiltonian (Sec. 2.1) and
quantum electrodynamics (Sec. 2.2). Sec. 2.3 further
reviews different forms of the QED Hamiltonians under
different gauges and provides a clear connection among
them through gauge transformations. Even though the
theory of QED goes back to the mid-twentieth century,
we discussed recent advances made in resolving gauge
ambiguities to describe interactions between light and
matter. In particular, Sec. 2.4 highlighted several pos-
sible causes of such ambiguities and their resolutions,
which enable consistent physics regardless of the chosen
gauge. In Sec. 2.5, we then connected the most rigorous
QED Hamiltonian with various approximate Hamilto-
nians commonly used in the quantum optics commu-
nity, which can be achieved through intuitive arguments
and simple mathematical approximations of the rigor-
ous Hamiltonian. Finally, in Sec. 2.6 we discussed light-
matter interactions between many molecules and many
cavity modes inside a Fabry–Pérot cavity, which is one
of the most experimentally relevant setups.

In Sec. 3, we discussed the recent progress of ab ini-
tio polariton chemistry calculations, where one aims to
solve polariton eigenvalue problems with real molecu-
lar systems. Particularly, we reviewed two approaches
for performing these calculations: the parameterized
QED (Sec. 3.1) approach and the self-consistent QED
(Sec. 3.2) approach. Along with a brief overview and
direct comparison of the two methods (Sec. 3.3.3), in
Sec. 3.3, we showcased recent works that have imple-
mented these approaches and demonstrated their ability
to calculate chemically relevant properties (Sec. 3.3.2)
in both the excited (Sec. 3.3.1) and ground polaritonic
states (Sec. 3.3.4).

In the second half of this review, we discussed the-
oretical and computational applications that use the
approaches outlined in the previous sections. Experi-
ments have shown that, by tuning the cavity photon fre-
quency and light-matter coupling between the quantized
cavity photons and electronic transitions, photochemi-
cal reactions can be controlled inside an optical cavity.
In Sec. 4, we revealed how through excited state non-
adiabatic polariton dynamics simulations, theorists, in-
spired by experiments, have discovered new ways of
modifying and enabling photochemical reactivity by ex-
ploiting quantum light-matter interactions. In Sec. 4.1,
we briefly outlined some of the quantum dynamics ap-
proaches used for simulating polariton dynamics exactly
and approximately. Then, in Sec. 4.2, we introduced
intuitive schemes and possible approaches for modify-
ing and manipulating photochemistry with the readily
available theoretical tools from cavity QED. Following
this, in Sec. 4.3, we showed how ab initio on-the-fly
simulations can validate these schemes toward modify-
ing photochemical reactivity in real molecular systems,
thereby revealing previously unknown basic principles
of how polaritons can be used to manipulate excited

state features and dynamical properties. Further, in
Sec. 4.4 we show that the same ideas can be applied in
the modification of photo-induced charge transfer reac-
tions. We then reviewed works in Sec. 4.5 that demon-
strate the possibility of introducing new conical inter-
sections through light-matter interactions and their im-
pacts on excited state processes. In Sec. 4.6, we showed
that the choice of the initially prepared quantum state
of the cavity photon can also be used to directly con-
trol photochemistry. We concluded this section with a
discussion in Sec. 4.7 on the important role of cavity
loss in these excited state processes and illustrated how
the non-ideal nature of real experiments (e.g., partially
transparent mirrors) can inhibit or enhance cavity con-
trol of photochemistry.

If the cavity resonance is instead tuned to the vi-
brational (i.e., instead of electronic) transitions in the
molecule, referred to as the vibrational strong coupling
regime, enhancement and suppression of ground state
chemical reactions have been experimentally observed.
We presented a few recently proposed theoretical ex-
planations of this (largely unresolved) phenomenon in
Sec. 5. Within this section, we first introduced a model
Hamiltonian in Sec. 5.1 for a single molecule coupled
to a cavity radiation mode and showed in Sec. 5.2
why simple one-dimensional classical transition state
theory (TST) fails to predict any modification to the
chemical reactivity when coupling to the cavity for this
model. In Secs. 5.3-5.4 we further developed the model
and showed how Grote-Hynes (GH) rate theory (or the
multi-dimensional TST), which also treats all degrees
of freedom (DOFs) classically, predicts a suppression
of chemical reactivity and provides a conceptually sim-
ple idea – the so-called solvent caging effect, where
the cavity radiation mode acts as a non-Markovian sol-
vent DOF – to explain the cavity-mediated suppres-
sion. Within this section, we also showed that approxi-
mate quantum corrections to the GH theory tend to de-
part further from experimental observations while exact
quantum dynamics simulations make predictions much
closer to experiments and depict similar features in the
chemical rate that are sharply peaked at resonance con-
ditions. In Sec. 5.5 we showed that the cavity photonic
mode, which was shown to act as a solvent DOF in
Sec. 5.4, can also enhance the chemical reactivity when
solvent-molecule interactions are weak. Finally, to con-
clude this section, we described in Sec. 5.6 how the cav-
ity can also modify thermally activated non-adiabatic
electron transfer reactions.

Overall, with the recent new capabilities demon-
strated in experiments, there has been a recent push to
rigorously simulate polariton systems in the strong cou-
pling regime. This has led to a number of theoretical in-
novations that start to explain and predict these exper-
imental results. However, there are still many mysteries
to solve as the systems get increasingly more complex
with more molecules and cavity modes.

From the theoretical perspective, the single-molecule
case has made significant progress due to the relative
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numerical simplicity of the simulations compared to
highly expensive many-mode (with many Fock states)
and many-molecule (with many electronic levels) sim-
ulations that have yet to be fully explored. From the
experimental perspective, single-molecule spectroscopy
in plasmonic cavities is extremely challenging and has
not been widely achieved; however, the results stem-
ming from such simple hybrid systems will afford a much
greater leap forward in understanding.

The theoretical understanding of how cavities can
control photochemical reactions in the collective cou-
pling regime has also seen significant progress, particu-
larly for polariton-mediated electron transfer reactions
where ab initio electronic structure calculations are of-
ten not essential to accurately predict reactivity. Impor-
tant experimental work remains to confirm the collec-
tive coupling mechanisms proposed by theorists and to
further demonstrate changes in photochemical reactiv-
ity in the collective coupling regime for a wider variety
of reactions.

Despite the recent progress discussed in Sec. 6, we still
do not clearly understand the mechanisms of collective
vibrational strong coupling and their modification of re-
activities, or the available mechanisms that can take
advantage of the collective coupling of forming polari-
ton that changes photochemistry reactivities (except for
charge transfer). In Sec. 6.1, we review works that elu-
cidate how collective coupling can modify photophysical
properties, such as energy/carrier transport, population
dynamics, and linear and non-linear spectroscopy. On
the other hand, in Secs. 6.2-6.3, we show how pho-
tochemical reactivity may be modified by collective ef-
fects. Finally, we discuss the mysteries of modifying
chemical reactivity in the vibrational strong coupling
in Sec. 6.4 and illustrate a few theoretical works that
have attempted to address this issue. This cutting-edge
research has many opportunities for both theorists and
experimentalists to contribute and discover new physics.
In this manner, much work is needed from both sides to
demystify these collective effects and unlock their po-
tential applications.

The purpose of this review was to provide fundamen-
tal knowledge for the readers in the emerging field of
polariton chemistry. Through the examination of the re-
cent literature, this review aimed to provide, in a single
location, much of the current working theoretical knowl-
edge of polariton chemistry for the continued efforts of
both the chemistry and quantum optics communities
to actively participate in this exciting new research di-
rection. Hopefully, this work can inspire the discovery
of new principles and mechanisms of chemical reactions
that take advantage of intrinsic quantum light-matter
interactions and facilitate a quantum leap in chemistry.
We envision that this review might lay the first several
bricks toward facilitating a merge of quantum optics and
chemistry.
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Hübener, H.; Rubio, A. Cavity Control of Ex-
citons in Two-Dimensional Materials. Nano Lett.
2019, 19, 3473–3479.

(145) Salij, A.; Tempelaar, R. Microscopic the-
ory of cavity-confined monolayer semiconduc-
tors: Polariton-induced valley relaxation and
the prospect of enhancing and controlling valley
pseudospin by chiral strong coupling. Phys. Rev.
B 2021, 103, 035431.

(146) Flick, J.; Appel, H.; Ruggenthaler, M.; Rubio, A.
Cavity Born–Oppenheimer Approximation for
Correlated Electron–Nuclear-Photon Systems. J.
Chem. Theory Comput. 2017, 13, 1616–1625.
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(302) Csehi, A.; Vibók, Á.; Halász, G. J.;
Kowalewski, M. Quantum Control with Quan-
tum Light of Molecular Nonadiabaticity. Phys.
Rev. A 2019, 100, 053421.

(303) Davidsson, E.; Kowalewski, M. Simulating Pho-
todissociation Reactions in Bad Cavities with the
Lindblad Equation. J. Chem. Phys. 2020, 153,
234304.

(304) Gudem, M.; Kowalewski, M. Controlling the
Photostability of Pyrrole with Optical Nanocav-
ities. J. Phys. Chem. A 2021, 125, 1142–1151.

(305) Torres-Sánchez, J.; Feist, J. Molecular Photodis-
sociation Enabled by Ultrafast Plasmon Decay.
J. Chem. Phys. 2021, 154, 014303.

101



(306) Groenhof, G.; Toppari, J. J. Coherent Light Har-
vesting through Strong Coupling to Confined
Light. J. Phys. Chem. Lett. 2018, 9, 4848–4851.

(307) Cusati, T.; Granucci, G.; Mart́ınez-Núñez, E.;
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Kéna-Cohen, S.; Yuen-Zhou, J. Polariton-
Assisted Singlet Fission in Acene Aggregates. J.
Phys. Chem. Lett. 2018, 9, 1951–1957.

(331) Csehi, A.; Kowalewski, M.; Halász, G. J.;
Vibók, Á. Ultrafast Dynamics in the Vicinity
of Quantum Light-Induced Conical Intersections.
New J. Phys. 2019, 21, 093040.

(332) Berry, M. V. Quantal phase factors accompany-
ing adiabatic changes. Proc. Math. Phys. Eng.
Sci. 1984, 392, 45–57.

(333) Wittig, C. Geometric phase and gauge con-
nection in polyatomic molecules. Phys. Chem.
Chem. Phys. 2012, 14, 6409–6432.

(334) Natan, A.; Ware, M. R.; Prabhudesai, V. S.;
Lev, U.; Bruner, B. D.; Heber, O.; Bucks-
baum, P. H. Observation of quantum interference
via light-induced conical intersections in diatomic
molecules. Phys. Rev. Lett. 2016, 116, 143004.

(335) Vogel, W.; Welsch, D.-G. Quantum Optics; John
Wiley & Sons, 2006.
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(337) Möller, K. B.; Jörgensen, T. G.; Dahl, J. P. Dis-
placed squeezed number states: Position space
representation, inner product, and some applica-
tions. Phys. Rev. A 1996, 54, 5378–5385.

(338) Koessler, E. R.; Mandal, A.; Huo, P. Incor-
porating Lindblad Decay Dynamics into Mixed
Quantum-Classical Simulations. J. Chem. Phys.
2022, 157, 064101.

(339) Felicetti, S.; Fregoni, J.; Schnappinger, T.; Re-
iter, S.; de Vivie-Riedle, R.; Feist, J. Photopro-
tecting Uracil by Coupling with Lossy Nanocav-
ities. J. Phys. Chem. Lett. 2020, 11, 8810–8818.

(340) Dutra, S.; Nienhuis, G. Derivation of a Hamil-
tonian for photon decay in a cavity,. J. Opt. B:
Quantum Semiclass. 2000, 2, 584–588.

(341) Nourmandipour, A.; Tavassoly, M. K. Dynamics
and protecting of entanglement in two-level sys-
tems interacting with a dissipative cavity: the
Gardiner–Collett approach. J. Phys. B: At. Mol.
Opt. Phys. 2015, 48, 165502.

(342) Dutra, S.; Nienhuis, G. Quantized mode of a
leaky cavity. Phys. Rev. A 2000, 62, 063805.

(343) Dutra, S. M. Cavity Quantum Electrodynamics;
Wiley-Interscience, 2004; p 408.

(344) Pino, J.; Schroder, F.; Chin, A.; Feist, J.; Garcia-
Vidal, F. Tensor network simulation of polaron-
polaritons in organic microcavities. Phys. Rev. B
2018, 98, 165416.

(345) Scala, M.; Militello, B.; Messina, A.; Piilo, J.;
Maniscalco, S. Microscopic Derivation of the
Jaynes-Cummings Model with Cavity Losses.
Phys. Rev. A 2007, 75, 013811.

(346) Ozaki, S.; Nakazato, H. Analytic Approach to
Dynamics of the Resonant and Off-Resonant
Jaynes-Cummings Systems with Cavity Losses.
Phys. Rev. A 2021, 103, 053713.
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