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We perform on-the-fly non-adiabatic molecular dynamics simulations using the recently developed spin-
mapping formalism. Two quantum dynamics approaches based on this mapping formalism, (i) the fully
linearized spin-LSC and (ii) the partially linearized spin-PLDM, are explored using the quasi-diabatic propa-
gation scheme. We have performed dynamics simulations in four ab initio molecular models for which bench-
mark ab initio multiple spawning data has been published. We find that the spin-LSC approach routinely
outperforms the spin-PLDM approach and yields a roughly equivalent accuracy to the previously reported
symmetric quasi-classical approach. We further explore the underpinnings of the spin-PLDM correlation
function by decomposing its various contributions stemming from its summation over all the terms, N2, in
the density matrix-focused initial conditions where N is the number of states in the quantum subsystem.
Finally, we found an approximate form of the spin-PLDM correlation function that simplifies the simulation
and reduces the computational costs from N2 to N .

I. INTRODUCTION

The simulation of realistic molecules using on-the-fly
dynamics techniques has been the topic of much work
over the last few decades.1–28 Performing on-the-fly dy-
namics requires two major components: (i) accurate elec-
tronic structure and (ii) propagation of the correlated
electron-nuclear dynamics.29 Due to the size of the total
Hilbert space needed to perform exact, full-dimensional
quantum simulation, the community has resorted to var-
ious approximations. The most successful and compu-
tationally accessible methods are the mixed quantum-
classical (MQC) approaches such as the fewest switches
surface hopping (FSSH)1 and the mean-field Ehrenfest
approach.30 These schemes rely on the output of elec-
tronic structure method to evolve the electronic subsys-
tem quantum mechanically while treating the nuclear
subsystem classically. Unfortunately, the MQC approx-
imation introduces some known drawbacks, notably the
breakdown of detailed balance31, the artificial creation of
electronic coherence,18 or incorrect chemical kinetics18

In response to these known drawbacks, non-
adiabatic dynamics approaches continue to be devel-
oped in order to systematically improve the results
while retaining a similar level of computational ex-
pense. Most notably, the partial linearized den-
sity matrix7,32 (PLDM), state-dependent ring polymer
molecular dynamics13,15,23, quantum-classical path inte-
gral (QCPI) approach33–36, the quantum classical Liou-
ville equation (QCLE) dynamics,14,37 and the symmet-
ric quasi-classical (SQC) approach38–42 with trajectory-
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specific zero-point energy.43 Even more recently, the spin-
mapping formalism has been shown to provide a sub-
stantial increase in accuracy in non-adiabatic benchmark
systems, such as the Fenna-Matthew-Olson (FMO) com-
plex, the spin-boson models,44–47 as well as others.48–50

Another related approach is the generalized discrete trun-
cated Wigner approximation (GDTWA).51 A recent con-
nection between the popular FSSH and mapping ap-
proaches has recently been developed and tested in both
model and ab initio settings is the mapping approach to
surface hopping (MASH).52–55

The spin-mapping approaches build upon the idea of
mapping the electronic Hilbert space to one of differ-
ent types. For example, the Meyer-Miller-Stock-Thoss
(MMST) mapping relations, employed, for example, in
the development of the SQC43 and PLDM56 approaches,
rely on mapping the N electronic states to that of a set of
N quantum harmonic oscillators, each of which are pro-
jected to include only their ground and excited states.
One of the main drawbacks of this mapping is that the
Hilbert space of the quantum harmonic oscillator is larger
than that of the original electronic system and so requires
projection or the normalization of the population to re-
strict the dynamics to these DOFs. However, the spin-
mapping formalism instead is able to map the electronic
dynamics onto the surface of a set of spin-1/2 systems
(i.e., Bloch spheres) where, by construction, the normal-
ization of the total population is guaranteed since the
radius of the Bloch sphere is fixed.

In our recent works, we have developed and imple-
mented the quasi-diabatic (QD) propagation scheme57–63

to seamlessly combine adiabatic electronic structure
methods with diabatic quantum dynamics methods. The
QD scheme relies on a short-time reference nuclear ge-
ometry (whose electronic states are often called “crude
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adiabatic” states), which acts as a set of locally diabatic
states during a single nuclear time-step. After this short-
time propagation, the QD states are updated to the new
reference geometry. In this propagation scheme, one does
not construct a global diabatic representation but uses a
sequence of local diabatic representations for each short-
time segment to propagate quantum dynamics. Note
that the quasi-diabatic propagation scheme57–61 should
not be confused with the approximate diabatic represen-
tation which is also often referred to as the “QD” repre-
sentation in the literature.64–66

In this work, we use the QD propagation scheme
to seamlessly combine the recently formulated spin-
mapping quantum dynamics methods with the adiabatic
output of the state-averaged complete active space com-
plete active space self-consistent field (SA-CAS-SCF)
electronic structure method. Here we perform direct
on-the-fly non-adiabatic dynamics to simulate the pop-
ulation dynamics of various photo-excited species, ethy-
lene, fulvene, methyliminium cation (CH2NH+

2 ), and 1,2-
dithiane, all of which have been previously published us-
ing the higher-level, wave-packet-based ab initio multiple
spawning (AIMS) approach.67–69 The AIMS results are
interpreted as a benchmark for the MQC results in this
work. These systems provide a set of benchmarks that
explore various phenomena found in non-adiabatic dy-
namics, such as electronic avoided crossings and conical
intersections, in a simplified way and offer a direct con-
nection between the commonly used model systems of
Tully and realistic, ab initio molecules.67

Our numerical results demonstrate that the linearized
spin-mapping approach outperforms the partially lin-
earized spin-mapping (spin-PLDM) approach for all ab
initio systems explored in this work and offers an ac-
curacy near the same level as the SQC or FSSH ap-
proaches but with fewer ad hoc parameters. We fur-
ther explored the nature of the spin-PLDM correlation
function by examining the various components individu-
ally. Here we found that an approximate scheme can be
constructed to give results of similar accuracy to the full
spin-PLDM correlation function, where one only needs to
calculate the upper triangle of the N2 initial conditions
including the diagonal cases. This reduces the computa-
tional expense from N2 trajectory-converged simulations

to N(N−1)
2 + 1 simulations, still amounting to more com-

putations than the spin-LSC approach which only ever
requires, at most, N calculations.

These simulations provide useful tests of the numeri-
cal performance of various non-adiabatic approaches be-
yond model systems, which have been used as the main
workhorse for benchmarking new methods in the field of
quantum dynamics. However, it is our hope that these
benchmark studies using realistic, ab initio systems will
help to foster the development of new quantum dynamics
approaches.

II. THEORY

A. The Molecular Hamiltonian

Simulating quantum dynamics of molecular systems
amounts to solving the coupled electron-nuclear dynam-
ics governed by the molecular Hamiltonian,

Ĥ = T̂R + T̂r + V̂c(r,R) ≡ T̂R + Ĥel(r,R), (1)

where T̂R = − ~2

2M∇
2
R and T̂r = − ~2

2me
∇2

r is the kinetic
energy operator for the nuclear and electronic degrees
of freedom (DOF), V̂c(r,R) describes the coulomb in-
teractions between all DOF (electronic and nuclear) and

Ĥel(r,R) = T̂r + V̂c(r,R) is the electronic part of the
molecular Hamiltonian. Directly simulating quantum dy-
namics by solving time-dependent Schrödinger equation
(TDSE) governed by Ĥ is intractable. Instead, mixed-
quantum classical and semi-classical quantum dynamics
approaches offer an efficient but approximate solution to
the TDSE. These approaches solve the quantum dynam-
ics in the following two steps.

In the first step, an electronic structure calculation
is performed to obtain adiabatic potential energies and
gradients. That is, one solves the time-independent
Schrödinger equation for the electronic part of the Hamil-
tonian,

Ĥel(r,R)|εµ(R)〉 = εµ(R)|εµ(R)〉, R ∈ {Ra} (2)

where |εµ(R)〉 and εµ(R) are referred to as the adiabatic
state and adiabatic potential energy surface respectively.

In the second step, one evolves the electronic and nu-
clear degrees of freedom (DOFs), governed by the total

Hamiltonian Ĥ, using the output of the previous step.
The total Hamiltonian Ĥ in the adiabatic representation
can be written as,

Ĥ =
∑
a

(
P̂a − i~d̂(Ra)

)2
2Ma

+
∑
µ

εµ(R)|εµ(R)〉〈εν(R)|

(3)
where dµν(Ra) = 〈εµ(Ra)|∇a|εν(Ra)〉 is the nonadiabatic
coupling vector (NACV), which originates from the nu-

clear kinetic energy operator T̂R and appears due to the
dependence of the adiabatic states on the nuclear coordi-
nates. The matrix elements (note that diagonal elements
are zero, dµµ(Ra) = 0) of the NACV can also be ex-
pressed as,

dµν(Ra) =
〈εµ(R)|∇aĤel|εν(R)〉

εν(R)− εµ(R)
, µ 6= ν (4)

where the denominator becomes zero at conical intersec-
tions or trivial crossings (i.e. εν(R)− εµ(R) = 0) making
the total Hamiltonian singular. Further, NACV is often
very sharp, requiring a small time step to obtain reason-
able dynamics. Performing dynamics using Ĥ given in
Eqn. 3 thus becomes numerically challenging.

https://doi.org/10.26434/chemrxiv-2024-4hzlj ORCID: https://orcid.org/0000-0002-8639-9299 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-4hzlj
https://orcid.org/0000-0002-8639-9299
https://creativecommons.org/licenses/by/4.0/


3

Barring this numerical challenge, importantly the adia-
batic representation also introduces incompatibility chal-
lenges for propagating the coupled electronic and nuclear
degrees of freedom. This is because many quantum dy-
namics approaches, such as the spin-mapping approaches
used in this work, are instead formulated in the diabatic
representation {|Dµ〉} are incompatible with the output
obtained in the adiabatic representation. Within the dia-
batic representation {|Dµ〉}, the NACV vanishes by def-
inition,

〈Dν |∇a|Dµ〉 = 0, (5)

as the diabatic states |Dµ〉 are independent of the nuclear
configuration {R}. The total molecular Hamiltonian in
the diabatic representation has the following preferable
compact form,

ĤD =
∑
a

P̂ 2
a

2Ma
+
∑
µν

Vµν(R)|Dµ(R)〉〈Dν(R)|, (6)

where Vµν(R) = 〈Dν(R)|Ĥel(r,R)|Dµ(R)〉 has
off-diagonal matrix elements (called diabatic cou-
pling) in contrast to its adiabatic counter-part∑
µ εµ(R)|εµ(R)〉〈εµ(R)| in Eq. 3. In this work,

we utilize the quasi-diabatic (QD) framework to directly
propagate the quantum dynamics using the outputs
obtained in the adiabatic representation. Below, we
briefly describe the spin-mapping approach and how it
has been interfaced with adiabatic outputs using the QD
framework.

B. The Spin-Mapping Approach

In this work, we closely followed the spin-mapping
(SM) approach of Richardson and coworkers.44–47 More
specifically, our outline of the theory will closely parallel
that of ref. 46 and 47 using the language of Cartesian
mapping variables.

Consider the coupled electron-nuclear Hamiltonian
with the electronic operators split into state-independent
V0(R̂) and state-dependent V̂ (R̂) terms,

Ĥ = T̂R̂ + V0(R̂) + V̂ (R̂), (7)

where the trace over the electronic subsystem
TrE [V̂ (R̂)] = 0 by construction. Note that V̂ (R̂)
is an N × N matrix, where N is the number of
considered electronic states.

Many dynamical quantities of interest can be written
as a two-time correlation function,

CAB(t) = Tr[ρ̂b(0)Â(0)B̂(t)], (8)

where Â(0) and ρ̂b(0) can be interpreted as the factorized
initial electronic and nuclear configuration for the system
at t = 0. In this work, we take Â and B̂ to be operators
in the N × N electronic sub-space. ρ̂b is the nuclear
density operator, and the trace is over both nuclear and
electronic degrees of freedom (DOFs).

1. Spin-LSC

In the fully linearized spin-mapping framework, any
electronic-only, two-operator correlation function can be
written as,

CAB(t) = 〈 AW (Z(0)) BW (Z(t)) 〉spin−LSC (9)

where AW (BW ) is the Stratonovich-Weyl (SW) trans-

form of the operator Â (B̂),

[Â]W (Z, 0) ≡ AW (Z(0)) = Tr[Â ω̂†W (Z(0))]

[B̂]W (Z, t) ≡ BW (Z(t)) = Tr[B̂ ω̂W (Z(t))].
(10)

The SW kernel can be written as,

ω̂W (Z, t) =
1

2

N∑
µ,ν

(
Zµ(t)Z∗ν (t)− γW δµν

)
|µ〉〈ν|, (11)

in the electronic basis {µ, ν} (in the diabatic represen-
tation). The kernel is evaluated as a function of the
complex-valued, time-evolved mapping variables Z =
{Z1,Z2, ...,ZN} with a fixed zero-point energy param-
eter γW = 2

N (
√
N + 1− 1). One can identify

Zµ = qµ + ipµ (12)

analogously to the commonly used MMST mapping;
however, the explicit use of the q and p variables is not
required and not used in this work.

The correlation function is evaluated using focused ini-
tial conditions such that,

〈· · ·〉spin−LSC → 〈· · · 〉foc.
spin−LSC

〈· · · 〉foc.
spin−LSC =

N∑
λ

∫
dRdPdZρb(R,P ) · · · ρ(λ)

W , (13)

where ρb(R,P ) is the nuclear Wigner distribution, ρ
(λ)
W

is the initially focused electronic distribution written as,

ρ
(λ)
W =

δ(|Zλ|2 − γW − 2)Πµ 6=λδ(|Zµ|2 − γW )∫
dZδ(|Zλ|2 − γW − 2)Πµ6=λδ(|Zµ|2 − γW )

.

(14)
This spin-LSC correlation function using the focused

initial sampling (Eq. 13) is evaluated by performing N
independent sets of trajectories, one for each λ in the
sum in Eq. 13. For each λ, the mapping variables Z are
initialized as,

Zλ =
√

2 + γW · eiφλ (Initially focused state)

Zµ =
√
γW · eiφµ , µ 6= λ (15)

with {φ} randomly sampled between 0 and 2π, indepen-
dently from one another.

In this work, we are only interested in correlation func-
tions with Â(0) = |σ〉〈σ|, which indicates that the initial
electronic density matrix is a single electronic state σ.
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This is the case for a time-independent Frank-Condon
excitation, often used as the initial condition for non-
adiabatic dynamics studies. In this case, the spin-LSC
correlation function is greatly simplified to,

C|σ〉〈σ|B(t) =

∫
dRdPdZρb(R,P )ρ

(σ)
W BW (Z, t), (16)

since,

AW = [|σ〉〈σ|]W = δσλ, (17)

which picks out a single term in Eq. 13. Since there
is no sum over λ in the correlation function, one only
needs to converge one set of trajectories (λ = σ in
Eq. 14), which involves sampling the mapping variables
as Zσ(0) =

√
2 + γW e

iφσ and Zµ6=σ(0) =
√
γW e

iφµ . Still,
one must still ensure that both the random phases {φ}
of the mapping variables and the nuclear phase space
variables {R,P} are sufficiently converged/sampled.

The propagation of the mapping and nuclear variables
can be done in the usual MMST manner as,

dZµ
dt

= −i
∑
ν

〈µ|V̂ (X)|ν〉Zν ,

dR

dt
=

P

M
,

dP

dt
= F0(R) + Fe(R,Z),

(18)

where F0(R) are the state-independent forces, and the
state-dependent forces Fe(R,Z) are calculated as,

Fe(R,Z) = −1

2

∑
µν

〈µ|∇V̂ (R)|ν〉(Zµ(t)Z∗ν (t)− γW δµν).

(19)
Finally, the estimator for the reduced density matrix of

a single trajectory is simply the population of the map-
ping variables evaluated at time t, as shown above in the
state-dependent force expression,

ρµν(t) =
1

2
(Zµ(t)Z∗ν (t)− γW δµν). (20)

2. Spin-PLDM

Following a similar line of reasoning as spin-LSC out-
lined above, spin-PLDM can be thought of as a natural
extension to the fully linearized case of spin-LSC, now
incorporating two sets of mapping variables for each elec-
tronic state. This extension can be thought of as an ex-
tension from a wavefunction representation to a density
matrix representation where one set of mapping variables
({Z}) represents the “ket” moving forward in time and
the other ({Z ′}) represents the “bra” moving backward
in time. In general, the observable quantities can be con-
structed as an average of these two non-interacting paths
in electronic action, only connected through simultane-
ous interaction with nuclear motion.46,47,56

The general correlation function can be written as,

CAB(t) =

〈 Tr[ Âω̂†W (Z ′, t)B̂ω̂W (Z, t) ] 〉spin−PLDM,
(21)

which is in stark contrast to that of Eq. 9 for spin-LSC in
that two sets of mapping variables appear ({Z}, {Z ′}),
which now represent the evolution operator instead of
the operators Â or B̂ explicitly.46,47 Hence, the spin-LSC
and spin-PLDM utilize these SW kernels to represent two
vastly different quantities in the correlation function.

Here, the time-evolved SW kernel is slightly modified
as,

ω̂(Z, t) =
1

2

N∑
µ,ν

(
Zµ(t)|µ〉〈ν|Z∗ν (0)− γW Û(t)

)
, (22)

where now the time-evolution [acted upon from the left

of the kernel as ω̂W (Z, t + ∆t) = e−iV̂ (R)∆tω̂W (Z, t)]
now evolves only a single Z while also evolving the ZPE
parameter in time. Û(t) is evolved at each timestep (∆t)
as,

Û(t) = e−iV̂ (RN )∆t · · · e−iV̂ (R2)∆te−iV̂ (R1)∆t1F , (23)

where V̂ (Rn) is the state-dependent potential from Eq.
7 evaluated at nuclear configuration Rn after n nuclear
timesteps. Note that at t = 0, Û(0) = 1N , which is the
identity matrix in the electronic Hilbert space with N
states. For spin-LSC, one could say that Û(t) = 1N for
all time t.

As before, we evaluate the correlation function using
focused initial conditions, which can be written as,

〈· · · 〉spin−PLDM → 〈· · · 〉foc.
spin−PLDM

〈· · · 〉foc.
spin−PLDM =

N∑
λ

N∑
λ′

∫
dRdPdZρb(R,P ) · · · ρ(λ)

W ρ
(λ′)
W .

(24)

Note now that the spin-PLDM correlation function has
picked up a second sum which focuses the backward map-
ping variables to electronic state λ′. This additional sam-
pling now impedes the same simplification that was made
before for spin-LSC when only computing initial opera-
tors Â = |σ〉〈σ|. Now, in principle, all N2 focused initial
conditions for λ and λ′ will play some role in the cor-
relation function at time t > 0 no matter the choice of
Â.

The mapping variables are initially sampled in the
same way as for spin-LSC and completely independently.

Zλ =
√

2 + γW eiφλ ; Zµ =
√
γW eiφµ , µ 6= λ

Z ′λ′ =
√

2 + γW eiφ
′
λ′ ; Z ′µ =

√
γW eiφ

′
µ , µ 6= λ′,

(25)

where now {φ} and {φ′} are independently and ran-
domly sampled between 0 and 2π. The time-evolution
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of the mapping variables is identical to Eq. 18 for the
forward and backward DOFs, while the state-dependent
nuclear force Fe(R) used to propagate the nuclei P/M =
Fe(R,Z,Z ′) is instead computed identically to the stan-
dard PLDM prescription as the average over the forward
and backward paths,

Fe(R,Z,Z ′) =
1

2

[
Fe(R,Z) + Fe(R,Z ′)

]
,

Fe(R,Z) =

− 1

2

∑
µν

〈µ|∇V̂ (R)|ν〉
(
Zµ(t)Z∗ν (t)− γW 1̂N

)
,

Fe(R,Z ′) =

− 1

2

∑
µν

〈µ|∇V̂ (R)|ν〉
(
Z ′µ(t)Z ′∗ν(t)− γW 1̂N

)
,

(26)

Note that here the propagator Û(t) does not appear,

since the representation of an operator (∇V̂ (R) in

this case, see Eq. 10) is written as [∇V̂ ]W (Z) =

Tr
[
∇V̂ (R)ω̂(Z)

]
,

[∇V̂ ]W (Z) =
1

2

∑
µν

〈µ|∇V̂ |ν〉
(
Zµ(t)Z∗ν (t)− γW δµν

)
,

(27)
for either Z or Z ′ mapping variables just as in spin-LSC,
and can be thought of as an average force of the forward
and backward paths.

For Â = |σ〉〈σ|, the estimator for the reduced density
matrix at time t of a single trajectory can be calculated
as,

ρµν(t) = Tr[ Âω̂†W (Z ′, t)|µ〉〈ν|ω̂W (Z, t) ]

= 〈σ|ω̂†W (Z ′, t)|µ〉〈ν|ω̂W (Z, t)|σ〉,
(28)

with,

〈ν|ω̂W (Z, t)|σ〉 =
1

2
(Zν(t)Z∗σ(0)− γW δνσ) (29)

Recall that the sum of initially focused conditions (λ and
λ′ from Eq. 24) affects the distribution of the mapping
variables (Z, Z ′) and so the effect of this focusing does
not appear in the estimator explicitly. Additionally, the
meaning of a single trajectory in spin-PLDM is rather
unclear, since the true correlation function depends not
on simple averaging over a statistical ensemble but also
over a set of sums {λ, λ′} that, in principle, give differ-
ent dynamics compared to those focused to a different
density matrix element (i.e., an initial state for both the
forward and backward components). As such, we will not
perform any analysis on individual trajectories from this
method.

Finally, we note that if γW is set to zero, the standard
PLDM formalism56 is recovered. Instead, if Z = Z ′ and
Û(t)→ 1̂N , then spin-LSC is recovered.

C. Quasi-diabatic Propagation

Here, we briefly outline the QD scheme used in this
work to connect the spin-mapping approaches, originally
formulated in the diabatic quantum representation, with
the adiabatic electronic structure calculations. For more
details on the QD scheme in general, we refer the reader
to Refs. 57,62,70,71.

Upon performing the electronic structure calcula-
tion at the initial nuclear configuration R(0) to
obtain the necessary adiabatic quantities: diagonal
energies εµ(0) and nuclear gradients ∇RVµν(0) =

〈εµ(0)|∇RĤel|εν(0)〉 = dµν ∗(εν(0)−εµ(0)), where dµν =
〈εµ(0)|∇R|εν(0)〉/(εν − εµ) (see Eq. 4). After calculat-
ing the initial force F(0) in the mapping representa-
tion (Eq. 19) and propagating the nuclear DOFs via a
velocity-Verlet scheme, a second electronic structure cal-
culation is performed at the updated nuclear coordinated
R(∆t) to obtain the necessary adiabatic quantities: di-
agonal energies εµ(∆t), nuclear gradients ∇RVµν(∆t) =

〈εµ(∆t)|∇RĤel|εν(∆t)〉 = dµν ∗ (εν(∆t) − εµ(∆t)), and
the time-overlap matrix Sµν(0,∆t) = 〈εµ(0)|εν(∆t)〉.

Next, the electronic mapping variables are propagated
using an linearly interpolated Hamiltonian between the
time 0 and ∆t in the basis of adiabatic electronic states
at time 0. The unitary rotation between the time ∆t
and time 0 bases is exactly the time-overlap matrix
S(0,∆t). Explicitly, the diagonal energies at time ∆t,
[ε(∆t)], are rotated to the time 0 basis as H(∆t) =
S(0,∆t)×[ε(∆t)]×ST(0,∆t), which forms an off-diagonal
Hamiltonian matrix. Here [ε(∆t)] implies a matrix repre-
sentation of the diagonal adiabatic energies εµ(∆t). The
linearly interpolated Hamiltonian then takes the form
H(t) = [ε(0)] + t−0

∆t

(
H(∆t) − [ε(0)]

)
, where t ∈ (0,∆t).

The mapping variables are propagated using a velocity-
Verlet scheme (by splitting the real and complex compo-
nents of Z) which solves the first equation in Eq. 18 for
spin-LSC for spin-PLDM, noting the only difference is
that the spin-PLDM contains two sets of mapping vari-
ables {Z,Z ′} that are propagated independently from
one another. Finally, the mapping variables are rotated
to the time ∆t basis via the time-overlap matrix S(0,∆t)
as ST(0,∆t)×Z(∆t)→ Z(∆t).

Furthermore, in spin-PLDM, the ZPE matrix U(0) = 1
(identity matrix at time 0) needs to be propagated ac-

cording to U(∆t) = exp[−iĤ∆t]U(0), which is done in
the time ∆t basis after the ZPE matrix has been ro-
tated to the ∆t basis such that the Hamiltonian is di-
agonal [ε(∆t)] and only applies a phase shift in addition
to the time-overlap transformation. The entire ZPE ma-
trix basis rotation and subsequent time-propagation can

be compactly written as U(∆t) = e−iĤ∆t × ST(0,∆t)×
U(0) × S(0,∆t) = e−i[ε(∆t)]∆t × ST(0,∆t) × U(0) ×
S(0,∆t).

The above procedure is repeated for the desired num-
ber of nuclear time-steps, replacing all time 0 quantities
with time ∆t quantities (i.e., the new reference basis)
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and further propagating the nuclei to acquire the time
2∆t adiabatic quantities.

D. Computational Details for Ab Initio Simulations

The non-adiabatic molecular dynamics simulations
use an in-house-modified version71 of the SHARC non-
adiabatic molecular dynamics code,72 interfaced to
the MOLPRO electronic structure package.73 On-the-
fly electronic structure calculations are performed at
the level of state-averaged complete active space self-
consistent field (SA-CASSCF) approach. Ethylene, ful-
vene, methyliminium cation, and 1,2-dithiane were calcu-
lated with 3SA-CASSCF(2,2), 2SA-CASSCF(6,6), 2SA-
CASSCF(6,5), and 3SA-CASSCF(6,4), respectively. All
simulations were performed with the 6-31G* basis set.
These SA-CASSCF parameters were taken from Refs. 67
and 68. In all cases, only the two lowest-energy, singlet
adiabatic states, S0 and S1, were used in the electronic
dynamics with the initial electronic state always set to
the first singlet excited state, S1. Unless otherwise spec-
ified, in all ab initio results, the timestep for the nuclear
propagation was 0.1 fs using 200 electronic substeps per
nuclear step. Further, 1000 trajectories were computed
for each molecular model. To be clear, in the spin-PLDM
correlation function, each initially focused electronic con-
ditions {λ, λ′} was converged with the 1000 trajectories,
in total 2 × 2 × 1000 = 4000 trajectories for each of the
two-state chemical models.

The initial Wigner distribution is sampled from the
ground vibrational state ν = 0 on the ground elec-
tronic state |S0〉, where the normal mode frequencies
(in the harmonic approximation) are calculated based
on the approach outlined in Refs. 74 and 75, as imple-
mented in the SHARC package.72 For all molecules, the
normal mode frequencies are computed at the level of
MP2/6-31++G** with the MOLPRO package, with the
optimized structure obtained at the same level of elec-
tronic structure theory for the ground electronic state.
In particular, the nuclear density ρW (R̃, P̃) in terms of
the molecular normal-mode frequencies {ω̃k} and phase

space variables {R̃, P̃} is given as76

ρW(R̃, P̃) ∝
N∏
k=1

exp[− tanh(
β~ω̃k

2
)(
mω̃k
~

R̃2
k +

1

mkω̃k~
P̃ 2
k )].

(30)
The initial distribution {R,P} is then obtained by trans-

forming {R̃, P̃} from the normal mode representation to
the primitive coordinates using the unitary transforma-
tion that diagonalizes the Hessian matrix. The positions
and momenta for all molecules except for fulvene were
sampled from the above Wigner distribution. For ful-
vene, only the coordinates were sampled and the mo-
menta were set to zero, such that the molecule encounters
only the slanted conical intersection.67
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FIG. 1. S1 population dynamics of the ethylene molecule at
the SA(3)-CASSCF(2,2)/6-31G* level of theory for a variety
of semi-classical methods: (a) dTSH, (b) γ-SQC-∆, (c) spin-
LSC, and (d) spin-PLDM. All methods are compared to the
ab initio multiple spawning (AIMS) result, which is taken to
be more exact compared to these semi-classical approaches.
The AIMS and dTSH results were taken from Ref. 67.

III. RESULTS AND DISCUSSION

Fig. 1 presents the photodissociation of ethylene
through its S1/S0 conical intersection generated by the
rotation of the H-C-C-H dihedral angle. The nuclear
dynamics of ethylene are analogous to the dynamics of
the molecular Tully model #1,77 as discussed in previ-
ous reports.54,62,67 In this model and ab initio system,
the wavepacket encounters a single nonadiabatic event,
a conical intersection (CI) in this case. This localized
crossing represents the simplest nonadiabatic effect in
the present work, which is demonstrated by the simplis-
tic population dynamics in Fig. 1. Even so, all of the
semiclassical quantum dynamics approaches fail to cap-
ture the entirety of the population dynamics compared
to the AIMS benchmark (blue).

Fig. 1a shows the popular decoherence-corrected sur-
face hopping approach (dTSH)78, which is a popular
method that captures much of the decoherence that stan-
dard FSSH fails to capture. Fig. 1b presents the γ-
corrected SQC approach using the triangle windowing
(γ-SQC-∆). Fig. 1c and Fig. 1d show the two new ap-
proaches of this work: spin-LSC and spin-PLDM, respec-
tively. At short times (less than 30 fs), all methods cap-
ture the correct population dynamics which exhibits 10
fs of plateau followed by a short decrease and another
short plateau (i.e., a shoulder). Though, dTSH and spin-
LSC capture the AIMS result better than γ-SQC-∆ and
spin-PLDM. At medium times (more than 30 fs and less
than 50 fs), only dTSH is able to capture the AIMS re-
sult, followed closely by spin-LSC. Both γ-SQC-∆ and
spin-PLDM overestimate the population in the S1 state.
At longer times, none of the methods accurately capture
the AIMS result; however, spin-LSC captures the over-
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FIG. 2. S1 population dynamics of the CH2NH+
2 molecule

at the SA(2)-CASSCF(6,5)/6-31G* level of theory for a va-
riety of semi-classical methods: (a) A-FFSH, (b) γ-SQC-∆,
(c) spin-LSC, and (d) spin-PLDM. All methods are compared
to the ab initio multiple spawning (AIMS) results, which are
taken to be more exact compared to these semi-classical ap-
proaches. The AIMS and A-FFSH results were taken from
Ref. 68.

all trends the best at all times, though underestimating
the S1 population at longer times. For the molecular
systems simulated here, Spin-PLDM seems to overesti-
mate the population at all times. Furthermore, the ini-
tial S1 population (between 0 and 15 fs) goes above 1.0,
which implies that 1000 trajectories were not sufficient to
fully converge this correlation function. Recall, the cost
of spin-PLDM scales poorly with the number of states
N , since N2 converged population dynamics: 1000 × 22

trajectories in this case, 4× more expensive than spin-
LSC, γ-SQC-∆, and dTSH. However, as we will discuss
later (in Fig. 7), a major simplification of spin-PLDM
can be made by excluding some of the N2 initial condi-
tions present in the full spin-PLDM correlation function.
Overall, all four approaches capture the general physics
of ethylene CI dynamics. Thus, a strict delineation of
each method’s quality is not straightforward.

Fig. 2 provides a slightly more challenging system: the
methyliminium cation (CH2NH2

+). This model is very
similar to ethylene in the sense that a CI is generated
by the changing H-C-N-H dihedral angle. As such, the
benchmark AIMS results suggest that the population dy-
namics have very similar features as the ethylene dynam-
ics; however, a recurrence/shoulder in the population of
the S1 state appears around 25-30 fs. For this system,
all methods, including augmented FSSH (A-FSSH)79 and
the mapping approaches, overestimate the initial popula-
tion transfer to the ground state around 10 fs. Following
this, all approaches seem to provide a plateau in the pop-
ulation of the S1 state, but only A-FSSH, γ-SQC-∆, and
spin-PLDM are able to showcase a visible recurrence in
the S1 population. Throughout the entire dynamics, A-
FSSH seems to capture all of the features found in the
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FIG. 3. S1 population dynamics of the fulvene molecule at
the SA(2)-CASSCF(6,6)/6-31G* level of theory for a variety
of semi-classical methods: (a) dTSH, (b) γ-SQC-∆, (c) spin-
LSC, and (d) spin-PLDM. All methods are compared to the
ab initio multiple spawning (AIMS) result, which is taken to
be more exact compared to these semi-classical approaches.
The AIMS and dTSH results were taken from ref. 67.

AIMS result, with spin-PLDM and γ-SQC-∆ close be-
hind, but both of which overestimate the S1 population
(or rather underestimate the population transfer rate to
the ground state) at long times (more than 50 fs). For
this model, it is clear that spin-LSC performs worse than
the other models while A-FSSH performs well compared
to the AIMS result.

Fig. 3 represents a more complicated nonadiabatic scenario
in which the fulvene molecule undergoes a periodic (every
∼ 10 − 20 fs) and extended encounter with an S0/S1 CI di-
rectly linked to the stretching of the C-CH3 stretching mode.
This is similar to the Tully model #354,62,67,77 which exhibits
a region of strong and extended coupling followed by branch-
ing and recrossing of the reflected wavepacket. In this case,
the dTSH approach (Fig. 3a) fails to capture the AIMS dy-
namics at any point in the nonadiabatic dynamics, overesti-
mating the AIMS results by more than 25%. However, dTSH
does capture the qualitative trends in the population dynam-
ics. Fig. 3b and Fig. 3c show the γ-SQC-∆ and spin-LSC ap-
proaches, respectively, both of which closely follow the AIMS
result but neither are able to capture the fine structure of the
population near 10 fs nor at 28 fs. dTSH, however, is able to
find the fine structure at 10 fs, even though the overall result-
ing population is not correct after the event. This points to
the fact that the dTSH result includes the forces stemming
from a single adiabatic surface at a time and not its mean-field
surface as is the case for both spin-LSC and γ-SQC-∆. Fi-
nally, the spin-PLDM result shows population dynamics very
similar to dTSH and overestimates the population of the ex-
cited state at almost all times. Further, spin-PLDM is not
able to capture the fine structure of the population at 10 fs.
However, like all the methods presented, spin-PLDM does
capture the general physics of the fulvene nonadiabatic dy-
namics.

To further probe the dynamics of fulvene, we examine the
averaged nuclear density of a single DOF and subsequent sin-
gle trajectory properties of the spin-LSC approach. Recall
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FIG. 4. (a) Fulvene C-C (ring carbon - methyl carbon) bond
length density/wavepacket, composed using the same spin-
LSC trajectories as provided in the construction of Fig. 3c.
(b-e) Observables of a single representative trajectory, includ-
ing time-dependent (b) energies of the S0 (black) and S1 (red)
electronic adiabatic states, (c) population of initially popu-
lated S1 state, (d) real (black) and imaginary (red) S0/S1

electronic coherence, and (e) C-C bond length. The inset in
panel b shows the energy difference between S1 and S0 on a
log scale.

that a single trajectory in spin-PLDM is less representative
than a single trajectory in any other approach since the cor-
relation function depends on a sum of vastly different initial
conditions (see Eq. 24) for the mapping variables and thus
subsequent nuclear dynamics. Therefore, we omit any fur-
ther study of spin-PLDM beyond the population dynamics
and the averaged contributions to the correlation function it-
self (to be discussed later in Fig. 7).

Fig. 4a shows the probability density for the C-C bond
stretching coordinate of the 1000-trajectory spin-LSC simu-
lation of the fulvene molecule. The wavepacket oscillates, gen-
erating the CI at each maximal value of stretching. At long
times, the wavepacket broadens slightly but not by an appre-
ciable amount since the C-C bond is never broken. During
the simulation, only two oscillations of this bond are allowed.
Fig. 4b-e show a single trajectory of the fulvene dynamics,
showing (Fig. 4b) the energies of the S1 (red) and S0 (black)
adiabatic states, (Fig. 4c) the population of the S1 state,
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FIG. 5. S1 population dynamics of the 1,2-dithiane molecule
at the SA(3)-CASSCF(2,2)/6-31G* level of theory for a va-
riety of semi-classical methods: (a) dTSH, (b) γ-SQC-∆, (c)
spin-LSC, and (d) spin-PLDM. All methods are compared to
the ab initio multiple spawning (AIMS) results, which is taken
to be more exact compared to these semi-classical approaches.
The AIMS result was taken from Ref. 69. Note that a limited
number of initial nuclear geometry/momentum samples (i.e.
14) were used in the AIMS simulation. We refer the reader to
Appendix A and Fig. 8 for discussions regarding this issue.

(Fig. 4d) the real (black) and imaginary (red) parts of the co-
herence, and (Fig. 4e) the single-trajectory C-C bond stretch-
ing coordinate. The potential energy landscape through time
is indicative of the prolonged nonadiabatic region analogous
to the Tully model #3 and correlates with the extended C-C
bond length occurring at 10 and 30 fs. The inset in Fig. 4b
shows the energy difference of the S1 and S0 states on a log
scale.

The population dynamics for this trajectory showcase the

complicated nonadiabatic event at 10 fs which all mapping

approaches fail to capture once averaged over the 1000 tra-

jectories. While the single trajectory population does not

match the AIMS result in magnitude of population, it shows

the fine structure (a short plateau/recurrence in S1 popula-

tion) of the AIMS result at 10 fs which becomes absent upon

trajectory-average. Furthermore, the dynamical evolution of

S1/S0 coherence is readily available from the spin-LSC ap-

proach, and correctly indicates regions of the strong coupling

by the dynamic oscillation frequency primarily dictated by

the inverse of the energy difference of the electronic states.

As our final molecular example, we present the pop-
ulation dynamics of the 1,2-dithiane molecule upon ex-
citation to the S1 state. This model showcases an ex-
tended CI between S1 and S0 which manifests as the S-S
bond breaks. Periodically, roughly every 300 fs, the S-S
bond reforms and thus moves the system away from the
CI. Fig. 5 shows the population dynamics, which for the
benchmark AIMS result showcases non-trivial S1 popula-
tion recurrences while the system is in the CI. During this
time (starting from ∼ 30 fs), the energies of the S1 and S0

state are degenerate for 100’s of fs (see Fig. 6b). In con-
trast to the AIMS result, all other approaches provide
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FIG. 6. (a) 1,2-dithiane S-S bond length density/wavepacket, com-
plementary to the data in Fig. 5c. (b-e) Observables of a single rep-
resentative trajectory, including time-dependent (b) energies of the
S0 (black) and S1 (red) electronic adiabatic states, (c) population
of initially populated S1 state, (d) real (black) and imaginary (red)
S0/S1 electronic coherence, and (e) S-S bond length. The inset on
panel b shows energy difference between S1 and S0 on a log scale.
It is important to note that only 200 trajectories were used in the
construction of panel a and with a larger time step of dt = 0.5 fs
due to the computational cost of the extended time scale of 500 fs
compared to 100 fs shown in Fig. 5.

smooth population dynamics. AIMS predicts a slight
population transfer starting at 25 fs followed by a plateau
until 40 fs. All other methods provide 30 fs of negli-
gible population transfer from S1 to S0 with no subse-
quent plateau. The dTSH approach (Fig. 5a) shows the
closest correspondence with the AIMS result while the
other approaches overestimate the population transfer to
the ground state. Overall, none of the other approaches
provide the fine structure of the AIMS result, but all
approaches provide the correct physics of the molecular
dynamics with dTSH performing the best. Note that a
limited number of initial nuclear geometry/momentum
samples (i.e. 14) were used in the AIMS simulation. We
refer the reader to Appendix A and Fig. 8 for discus-
sions regarding this issue.

In a similar fashion as for the fulvene molecule, in Fig. 6
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FIG. 7. S1 population dynamics for all atomistic models, (a) ethy-
lene, (b) fulvene, (c) CH2NH+

2 , and (d) 1,2-dithiane, using the
spin-PLDM method. The thick, solid lines are the same data for
AIMS (blue) and spin-PLDM (orange) in previous figures for com-
parison. The dotted curves showcase the the partial components
Pλλ′ of the spin-PLDM correlation function for the population (a
single λλ′ term in the sum in Eq. 24), which decomposes each of
the N2 = 4 initially focused conditions of the electronic density
matrix.

we present a closer look at the nuclear dynamics of 1,2-
dithiane for the spin-LSC approach as well as quantities
from a single-trajectory. Fig. 6a shows the density of the
S-S bond length across 200 trajectories at an extended
time scale of 500 fs. Note that Fig. 5 only showed re-
sults up to 100 fs due to the limited AIMS data and with
1000 trajectories. In contrast to the C-C bond length
density shown in Fig. 4a, the S-S bond breaks and al-
lows the nuclear wavepacket to broaden due to the larger
conformational space. The potential energies of a sin-
gle trajectory are shown in Fig. 6b and clearly showcase
the extended degeneracy of the ground and first excited
states, starting from ∼30 fs until ∼300 fs when the S-S
bond is reforming (see single-trajectory S-S bond length
in Fig. 6e). The population of the excited state is shown
in Fig. 6c along with the coherences in Fig. 6d. The pop-
ulation varies rapidly between the ground and excited
state during the regions of degeneracy (30-300 fs) and
implies that, unlike the fulvene molecule, trajectory av-
eraging is required for the 1,2-dithiane system in order
to make any prediction regarding the populations due to
the immense and prolonged coupling between the states.
Similarly, the coherence showcases equally complicated
behavior in the regions of degeneracy.

While the results of the spin-PLDM approach in these
ab initio test cases did not provide superior accuracy
compared to SH, SQC, or spin-LSC methods, it is worth-
while to take a closer look at the spin-PLDM correlation
function to better understand the approach, especially
given that PLDM approach usually provides more accu-
rate dynamics in system-bath models. Fig. 7 presents
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the partial contributions Pλλ′ to the total spin-PLDM
correlation function CAB =

∑
λλ′ Pλλ′ (Eq. 24) for all

four molecular models explored in this work. The total
spin-PLDM correlation function requires a summation of
overall possible initially focused conditions {λ, λ′} of the
electronic mapping variables {Z,Z ′}, leading to N2 ini-
tial conditions that need to be converged with respect to
the number of trajectories (1000 ×F 2 = 4000 trajectories
in this work).

Fig. 7a shows the population of the excited state for
the AIMS result (blue) as well as the total spin-PLDM
correlation function (orange). The dotted lines repre-
sent the partial contributions to the spin-PLDM corre-
lation function. The green dotted line is the case where
λλ′ = 11 and hence has an initial value of 1.00 since
this was the intended initial photo-excitation of the sys-
tem. This condition appears only in the definition of
the operator Â = |1〉〈1|, which is in principle not im-
plemented until after all N2 simulations are completed
in the post-processing by explicitly performing the trace
Tr[Âω̂†(Z ′, t)B̂ω̂(Z, t)] once the time-dependent kernels
are known for each λλ′ condition. The other components
cannot start with any other value than 0.0 at the ini-
tial time but can accumulate population at later times,
as pointed out in Ref. 46,47. In this model, only the
off-diagonal initial conditions λλ′ = 01, 10 appreciably
contribute to the total population. At the final time, to-
gether they contribute up to 5.0% of the total population.

For fulvene in Fig. 7b, a similar trend emerges where
the off-diagonal initial conditions generate the most pop-
ulation contribution while the diagonal initial condition
(i.e., P00) does not. These trends apply to the final two
molecular models as well. However, the off-diagonal con-
tributions in the latter two molecules, [CH2NH2]+ and
1,2-dithiane, at long times, are negative, thereby dimin-
ishing the population generated by the P11 contribu-
tion. In fact, the off-diagonal contributions present in
the [CH2NH2]+ and 1,2-dithiane dynamics represent up
to 20% and 10% at a long time. Furthermore, the ethy-
lene and fulvene molecules exhibit periodic-like contri-
butions from the off-diagonal initial conditions while the
other two showcase non-periodic population dynamics. It
was expected that the ethylene and [CH2NH2]+ partial
contributions would look similar to one another due to
the similarity of the non-adiabatic event present in each
molecule, but this was not observed.

For systems with many electronic states, the number
of trajectories required to converge all the partial contri-
butions can become unmanageable. Thus one needs to
resort to some approximation for the simulations. It is
our experience that the spin-PLDM correlation function
can be adequately represented by two approximations to
the total correlation function by ignoring some of the par-
tial contributions. The first approximation is to simply
ignore all contributions except the initially excited state.
In each of our models in this work, that amounts to keep-
ing only the P11 contribution. In the ab initio models
explored in this work, the P11 population represents at

least 88% of the total contribution, at worst. The next
best approximation is to take only the single diagonal
contribution which corresponds to the initial excitation,
Pii where i is the initial excited state as well as a sin-
gle column (or row) of the density matrix that includes
this initial excitation, Piλ, for example, with twice the
weight. In other words, the approximation amounts to
PTotal = Pii +

∑
λ 2Piλ, where the factor 2 accounts for

the equal contribution from both the Piλ and Pλi terms
(as shown in Fig. 7 since P01 ≈ P10). This approximation
amounts to only N converged initial conditions instead
of N2 as prescribed by the total correlation function.

Neglecting the other diagonal initial conditions is cor-
roborated by the results of the main text, where the P00

never contributed any appreciable amount of population.
The other off-diagonal initial conditions Pλλ′ where λ 6= i
and λ′ 6= 1 require an examination of a system with more
than two electronic states. Fig. S1 in the Supporting
Information presents the population dynamics for the
FMO 7-state model system46,47 which has been previ-
ously studied with spin-PLDM and achieves superior ac-
curacy compared to FSSH, SQC, and spin-LSC, matching
the benchmark hierarchical equations of motion (HEOM)
result. Fig. S2a presents the partial contributions to the
ground state S0 population as well as the single-column
approximation which yields the same accuracy as the full
spin-PLDM correlation function result with 7 converged
simulations instead of 49, a reduction of 86% in compu-
tational cost. The other diagonal and off-diagonal initial
conditions are shown in Figs. S2b,c and show less than
0.3% contribution at all times.

IV. CONCLUSIONS

In this work, we use the quasi-diabatic propaga-
tion scheme to directly interface the diabatic linearized
(spin-LSC) and partially linearized (spin-PLDM) spin-
mapping approaches44–47 and the CASSCF on-the-fly
electronic structure calculations to propagate ab initio
non-adiabatic dynamics. We have performed on-the-fly
simulations for four recently suggested molecules, ethy-
lene, fulvene, methyliminium cation (CH2NH+

2 ), and
1,2-dithiane.67–69 These molecular models provide exam-
ples of common non-adiabatic phenomena found ubiqui-
tously in realistic systems, namely conical interactions
and avoided crossings and are closely related to the well-
known simple curve crossing models of Tully.77

We have shown that the spin-LSC method provides
very accurate non-adiabatic population dynamics when
comparing to ab initio multiple spawning (AIMS),67–69

exhibiting a similar level of accuracy to the recently
developed symmetric quasi-classical (SQC) approach of
Miller and coworkers with a trajectory-adjusted zero-
point energy parameter43 and that of trajectory sur-
face hopping (TSH) with energy-based decoherence
corrections.67 See our previous report on SQC dynamics
in Ref. 62 using similar molecular models. However, the

https://doi.org/10.26434/chemrxiv-2024-4hzlj ORCID: https://orcid.org/0000-0002-8639-9299 Content not peer-reviewed by ChemRxiv. License: CC BY 4.0

https://doi.org/10.26434/chemrxiv-2024-4hzlj
https://orcid.org/0000-0002-8639-9299
https://creativecommons.org/licenses/by/4.0/


11

more involved spin-PLDM dynamics exhibit an equiva-
lent or decrease in accuracy in the population dynamics
for all models studied, with the Fulvene model (Fig. 3)
showcasing the least accurate results.

We further explored the nature of the spin-PLDM cor-
relation function by examining the various components
(initially focused contributions λ and λ′) individually.
Here we noted that when calculating an initial popu-
lation element |σ〉〈σ|, the off-diagonal initially focused
conditions σλ (where λ 6= σ) contribute nearly the same
magnitude and sign to the overall correlation function as
λσ. Thus, calculating one and doubling its weight pro-
vides the same contribution to the total correlation func-
tion. Further, the other diagonal contributions λλ (with
λ 6= σ) have minimal magnitude in their contribution to
the overall correlation function and can be ignored. In
this sense, an approximate scheme can be constructed,
at least in these few example systems explored in this
work. In this case, one only needs to calculate a sin-
gle column of initially focused density matrix elements,
σλ, which reduces the computational cost from N2 to
N converged simulations, still amounting to more com-
putations than the spin-LSC approach which only ever
requires one converged initial condition given an initial
excitation to |σ〉〈σ|.

These calculations provide useful and non-trivial tests
to systematically investigate the numerical performance
of various recently developed diabatic quantum dynam-
ics approaches, going beyond the simple diabatic model
systems that have historically been the major workhorse
in the quantum dynamics field. At the same time, we
hope these available benchmark studies will also foster
the development of new quantum dynamics approaches.
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FIG. 8. S1 population dynamics of the 1,2-dithiane molecular
model for the spin-LSC (orange and dotted curves) and AIMS (blue
curve) approaches. To directly compare the spin-LSC method to
the benchmark AIMS result (data taken from Ref. 69), the spin-
LSC was performed using the same 14 initial geometry/momenta
as used in and provided by Ref. 69. The 1000-sample spin-LSC
(orange) and the 14-sample AIMS (blue) are identical to the data
provided in Fig. 5c.

Appendix A: Initial Conditions and Convergence of
Population Dynamics

The comparison between the mean-field approaches
and AIMS for the 1,2-dithiane molecular species (Fig. 5)
was significantly worse than the other molecular mod-
els. While this discrepancy can be at least partially at-
tributed to the quality of the MQC approaches and the
complexity of the 1,2-dithiane dynamics of an extended
region of degeneracy between the ground and excited
state, we briefly examine the quality and robustness of
the initial conditions of the original AIMS data provided
in Ref. 69.

In the original work,69 the authors used 14 unique ini-
tial geometries and momentum sampled from the Wigner
distribution for their AIMS calculations. Furthermore,
the authors used these 14 nuclear samples 8 times with
different random seeds, for a total of 112 trajectories. A
major limitation of these results is the limited amount of
the geometry/momenta sampled at the beginning. These
limited numbers of nuclear samples were chosen due to
the large computational cost of the AIMS dynamics sim-
ulations. However, to understand the large discrepancies
between the AIMS results and MQC populations, we ex-
plore the dependence of the spin-LSC results on the re-
duced initial nuclear sampling identical to the AIMS re-
sult.

Using the same 14 nuclear geometries and momenta
provided in the Supporting Information of Ref. 69, we
performed spin-LSC dynamics on the 1,2-dithiane molec-
ular system to compare to the fully converged spin-LSC
(using 1000 nuclear samples). Fig. 8 shows the S1 popu-
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lation dynamics for the AIMS approach with 14 nuclear
samples (solid blue curve) and the spin-LSC approach
with 1000 nuclear samples (solid orange curve). Both of
these results are duplicated from Fig. 5c. The dotted
black curve shows the spin-LSC result using the same 14
initial geometries and momenta as the AIMS result. A
vast majority of the features in the population dynamics
of AIMS are recovered and can be directly attributed to a
lack of convergence in the nuclear sampling scheme. Since
similar numbers of nuclear samplings were performed for
the other three molecular models, the AIMS results are
to be taken as a qualitative result for the population dy-
namics.

While the AIMS approach is in principle a rigorous
path toward the exact dynamics of photo-excited molec-
ular systems, the computational cost of this approach
sometimes forces the user to relax the parameters neces-
sary for convergence, especially for the number of initial
Gaussian functions. We suggest caution when using such
results for a benchmark against more approximate meth-
ods such as novel MQC approaches. Thus, care must be
taken when comparing the MQC results to these high-
level benchmarks, keeping in mind that the convergence
of the parameters/initial conditions for these wavepacket
approaches is paramount to the quality of the results.
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